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Abstract We investigate the possibility of proving the Central Limit Theorem (CLT) for
Dynamical Systems using only information on pair correlations. A strong bound on multi-
ple correlations is known to imply the CLT (Chernov and Markarian in Chaotic Billiards,
2006). In Chernov’s paper (J. Stat. Phys. 122(6), 2006), such a bound is derived for dynam-
ically Hölder continuous observables of dispersing Billiards. Here we weaken the regularity
assumption and subsequently show that the bound on multiple correlations follows directly
from the bound on pair correlations. Thus, a strong bound on pair correlations alone implies
the CLT, for a wider class of observables. The result is extended to Anosov diffeomorphisms
in any dimension. Some non-invertible maps are also considered.
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1 Introduction

The study of statistical properties of dynamical systems began its blossom after the discov-
ery of Markov partitions for smooth hyperbolic systems. Such a partition, when it exists,
allows the system to be seen as a shift acting on infinite sequences of finitely many symbols.
Using spectral arguments, Markov partitions were used to import results from the statistical
mechanics of Gibbs measures. Among these were exponential decay of correlations and the
Central Limit Theorem (CLT) for Anosov and Axiom A systems [5].

Often finite Markov partitions fail to exist, as is the case for Sinai Billiards. For under-
standing statistical properties of Billiards, Bunimovich and Sinai [7] introduced the idea of
approximations using Markov Chains with countably many states satisfying a Doeblin con-
dition. This way, the authors obtained the CLT, Donsker’s Invariance Principle, and stretched
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exponential decay of correlations. Since then, Central Limit Theorems and mixing results
for a range of systems have been proven by many authors and exponential decay of correla-
tions for Billiards has been established [27].

In the context of dynamical systems, the question whether fast decay of pair correlations
implies the CLT remains open. Hopes that the answer is positive are not completely without
warrant: we have been unable to locate examples in the literature in which pair correlations
decay rapidly but the CLT fails. On the other hand, cases in which the CLT has been inferred
from little more than a pair correlation bound are few. The goal of this paper is to investigate
the possibility of using information solely regarding pair correlations for claiming control
over multiple correlations, and further for obtaining the CLT. In a physically interesting
example, we show that a single pair correlation bound implies the CLT for Sinai Billiards
in a simple fashion. We also prove a similar result for Anosov diffeomorphisms in arbitrary
dimension.

Let F : M → M be a dynamical system with an invariant measure μ. Measurable func-
tions f : M → C are called observables and their averages are denoted 〈f 〉 = ∫

M f dμ. Re-
call that a dynamical system is mixing if limn→∞〈f · g ◦ F n〉 = 〈f 〉〈g〉 for all f,g ∈ L2(μ).

For a mixing system, a typical bound on pair correlations is

∣
∣〈f · g ◦ F n〉 − 〈f 〉〈g〉∣∣ ≤ cf,grf,g(n) (1)

for all n, given that f and g belong to some suitable classes of observables, H1 and H2,
respectively. Here the prefactor cf,g usually depends on a few properties of f and g—such
as their norms—rather than the details of the functions. Moreover, as n → ∞, the rate factor
rf,g(n) → 0 at a rate that only depends on a few properties of f and g. For instance, the
rate could be exponential and the exponent could depend on the regularity—say the Hölder
exponents—of the observables.

Assume now that f is real-valued and consider sums of the form

Sn =
n−1∑

j=0

f ◦ F j .

Recall that the Central Limit Theorem (CLT) states that the distribution of the normalized
sequence (Sn − n〈f 〉)/√VarSn tends to the standard Gaussian distribution:

lim
n→∞μ

(
Sn − n〈f 〉√

VarSn

≤ t

)

= 1√
2π

∫ t

−∞
e−s2/2 ds ∀t ∈ R. (2)

If the sequence of auto correlations Cf (n) = 〈f · f ◦ F n〉 − 〈f 〉2 has a finite first moment,
i.e.,

∞∑

n=1

n
∣
∣Cf (n)

∣
∣ < ∞, (3)

then a direct computation reveals that

lim
n→∞

VarSn

n
= σ 2

f = Cf (0) + 2
∞∑

i=1

Cf (i). (4)
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In fact a bit more is true under condition (3), namely VarSn −nσ 2
f = O(1). It is our standing

assumption that (3) holds and that σ 2
f > 0.1 In this case

√
VarSn can be replaced by

√
nσf

in (2). The summability of the auto correlations, at the very least, is necessary for the CLT
to hold in this form. Establishing (1) has been an essential, but not sufficient, part of CLT
proofs in the literature.

In [14], it is shown that the CLT is actually implied by good decay of multiple correla-
tions. The authors give the Sinai Billiards as an application, and deduce the CLT from the
strong bound on multiple correlations obtained in [11].

Multiple correlations can generically be viewed as pair correlations: assuming f1, . . . , fk

are observables and n ≥ 0 and 0 ≤ i1 < · · · < il < il+1 < · · · < ik are integers, we have

〈
f1 ◦ F i1 · · ·fl ◦ F il · fl+1 ◦ F il+1+n · · ·fk ◦ F ik+n

〉 = 〈
f̃ · g̃ ◦ F n

〉
,

if we define

f̃ = f1 ◦ F i1 · · ·fl ◦ F il and g̃ = fl+1 ◦ F il+1 · · ·fk ◦ F ik .

This representation, the choice of l and n, is rather arbitrary, but if the time gap n can be
chosen large, one may hope to benefit from (1) and claim control over multiple correlations
in order to verify that the CLT holds. However, even if one is able to prove that f̃ ∈ H1 and
g̃ ∈ H2, which is not always the case, it may turn out that cf̃ ,g̃ or rf̃ ,g̃(n) is substantially
worse than needed for the argument to work. In the following sections, the idea of con-
trolling multiple correlations through pair correlations is developed further. In particular,
applications to Billiards and Anosov diffeomorphisms are presented.

Unified approaches for obtaining the CLT for dynamical systems are available in the
literature [10, 21]. They are general, but of quite different flavor compared to this work. The
paper [10] has been formulated in terms of mixing properties of partitions of the phase space
and is based on Markov approximations. Martingale approximations are used in [21]; see
also [22]. In the invertible case, the latter too requires refined information about partitions,
their measurability, existence of conditional measures, and estimates on the size of their
elements. See, however, the first paragraph of Sect. 5.1 discussing the non-invertible case.
It is clear that, for the relevant parts, equivalent information must be contained in any CLT
proof; in our examples it has surprisingly been encoded into a strong pair correlation bound.

For each system considered in this paper, the CLT has already been established earlier.
Our purpose is to present a new way of obtaining these crucially important results using
correlation functions, which are objects that physicists are very familiar with.

2 Obtaining the CLT from the Decay of Multiple Correlations

Here we make precise the informal statement that sufficient control over multiple correla-
tions implies the CLT. Theorem 1 is obtained from the proof of Theorem 7.43 in [14]. As
all the necessary details can be found in [14], we omit them here. Let us nevertheless men-
tion that the backbone is a clever trick due to Bernstein [3, 4] for approximating sums of

1By Leonov [19, Lemma 1], σ 2
f

= 0 holds for a function f ∈ L2(μ) if and only if f = g ◦ F − g for some

g ∈ L2(μ). Moreover, if σ 2
f

= 0, then f = g ◦ F − g for some g lying in the closed subspace of L2(μ)

spanned by the sequence (f ◦ F n)n∈N .
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weakly dependent random variables by those of independent ones. The CLT is then inferred
by checking that a Lindeberg condition on the independent variables is satisfied.

To formulate the theorem, we first partition the time interval [0, n − 1] into an alter-
nating sequence of long and short intervals. The long intervals are of length2 p = [na]
and the short ones are of length q = [nb] with 0 < b < a < 1

2 . Hence, there are precisely
k = [n/(p + q)] ∼ n1−a pairs of long and short intervals (and a remaining interval of length
n − k(p + q) < p + q).

Theorem 1 Denote g = e
itf/

√
k VarSp and, for each 1 ≤ r ≤ k,

wr = (
g · g ◦ F · · ·g ◦ F p−1

) ◦ F (p+q)(r−1) = w1 ◦ F (p+q)(r−1). (5)

If (3) and

lim
n→∞

∣
∣〈w1 · · ·wk〉 − 〈w1〉 · · · 〈wk〉

∣
∣ = 0 ∀t ∈ R (6)

hold, then the CLT (2) is satisfied together with (4).

Remark 2 We stress that p, q , k, g, and wr all depend on n. Notice that a time gap of length
q separates the variables wr which are ‘supported’ on the long intervals of length p.

To shed a bit of light on the method of [14], let us denote by �r , 1 ≤ r ≤ k, the long
intervals and split the sum

Sn = S ′
n + S ′′

n ,

where S ′
n and S ′′

n are the sum over all the long intervals,
⋃

r �r , and the remainder,
[0, n − 1] \ ⋃

r �r , respectively:

S ′
n =

k∑

r=1

S(r)
p with S(r)

p =
∑

i∈�r

f ◦ F i .

Notice that the number of long and short intervals as well as the length of each interval
increases as n increases. However, the fraction of the entire time interval [0, n − 1] covered
by

⋃
r �r tends to 1, because

lim
n→∞

p + q

p
= lim

n→∞
[na] + [nb]

[na] = 1.

Therefore, the sum S ′′
n can asymptotically be neglected. Moreover, as the variables f ◦ F i

are weakly dependent and as the gaps between the long intervals �r increase with n, the
sums S(r)

p become asymptotically independent. This way, Sn can be approximated by a sum
of i.i.d. random variables and the asymptotic normality of Sn/

√
n be verified.

It appears that [11, 14] are the first places where the possibility of obtaining the CLT
based solely on a strong bound on multiple correlations has been explicitly mentioned, al-
though Bernstein’s trick has been introduced into the study of dynamical systems at least
as early as [7]. We would like to stress that it is not the rate of decay per se, but the form
of the bound on multiple correlations that counts in the proof appearing in [14]; hence our

2Here [x] is the integer part of a number x.
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choice to call such bounds strong as opposed to, say, exponential. See Corollary 8 and Re-
mark 9. Indeed, as explained in the Introduction, fast decay of pair correlations could yield
fast decaying bounds on multiple correlations which, however, are too weak to be used in
conjunction with Theorem 1 for deducing the CLT.

We remind the reader once more that each wr in (6) depends on n. Nevertheless, we
mimic pair correlation notation by rewriting the multiple correlations in (6) as the telescop-
ing sums

〈w1 · · ·wk〉 − 〈w1〉 · · · 〈wk〉 =
k−1∑

r=1

〈w1〉 · · · 〈wr−1〉
[〈wr · · ·wk〉 − 〈wr〉〈wr+1 · · ·wk〉

]
.

Recalling |〈wr〉| ≤ 1 and using stationarity, we obtain

Corollary 3 Denote Wr = w1 · · ·wr−1. If (3) and

lim
n→∞

k∑

r=2

∣
∣
〈
w1 · Wr ◦ F p+q

〉 − 〈w1〉〈Wr〉
∣
∣ = 0 ∀t ∈ R

hold, then the CLT (2) is satisfied together with (4).

In this paper we argue that, while fast decay of pair correlations alone may not suffice for
the CLT to hold, detailed information about their structure sometimes will. Below we will
show that two interesting classes of dynamical systems, Sinai Billiards (see [12] for appli-
cations) and Anosov diffeomorphisms, actually both admit a strong pair correlation bound
that yields the CLT directly by supplying strong enough bounds on multiple correlations. As
far as the author knows, these are the first examples of the kind.

Let us stress that our interest below is not in improving existing estimates. Instead, we
wish to demonstrate a new connection between pair correlations and the Central Limit The-
orem. For doing so, some generalizations of existing literature—resulting in classes of ob-
servables which may turn out useful per se—are required.

3 Sinai Billiards

Here Sinai Billiards [23] refers to the 2D periodic Lorentz gas with dispersing scatterers
and finite horizon (finite free path). We will only list some facts about such systems, but
the reader unfamiliar with Billiards should be able to follow the reasoning by taking the
estimates in this section for granted. For background, see [14, 24, 25].

Recall that the dynamics of Sinai Billiards induces a billiard map F : M → M on the
collision space M, which preserves a smooth ergodic SRB measure μ. This map is uni-
formly hyperbolic but has a set of singularities due to tangential collisions. In a standard
representation of the collision space, tangential collisions correspond to horizontal lines—
the boundary S0 of M. The map also suffers of unbounded distortion because of the same
reason. In order to deal with this nuisance, the space M is divided by countably many
horizontal lines into a disjoint union of strips [8, 11], on each of which distortions can be
controlled. Let us denote the union of such lines S. This way the space is divided by S0 ∪ S

into countably many connected components which we call homogeneity strips or briefly
H-strips.
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There are two special families of cones associated with billiards. The unstable cones are
invariant under F and the stable ones under F −1. A smooth curve is called stable if at every
point its tangent vector belongs to the stable cone. The H-strips divide any stable curve into
disjoint H-components. A stable curve W is a stable manifold if F nW is a stable curve
for all n > 0. Notice that the image F nW of a stable manifold W shrinks as n increases,
but may well consist of several H-components. A stable manifold W is a homogeneous
stable manifold, if F nW has just one H-component for all n > 0. Unstable curves, unstable
manifolds, and homogeneous unstable manifolds are defined analogously by considering
unstable cones and backward iterates of F .

For all x, y, we define the future separation time

s+(x, y) = min
{
n ≥ 0 : F nx and F ny lie in different H-strips

}

and the past separation time

s−(x, y) = min
{
n ≥ 0 : F −nx and F −ny lie in different H-strips

}
.

We will now introduce two notions of regularity. We say f is dynamically Hölder con-
tinuous on homogeneous unstable manifolds and write f ∈ H+

� , if there exist Kf ≥ 0 and
ϑf ∈ (0,1) such that, for any homogeneous unstable manifold Wu,

∣
∣f (x) − f (y)

∣
∣ ≤ Kf ϑ

s+(x,y)

f ∀x, y ∈ Wu. (7)

Similarly, we say f is dynamically Hölder continuous on homogeneous stable manifolds
and write f ∈ H−

� , if there exist Kf ≥ 0 and ϑf ∈ (0,1) such that, for any homogeneous
stable manifold Ws ,

∣
∣f (x) − f (y)

∣
∣ ≤ Kf ϑ

s−(x,y)

f ∀x, y ∈ Ws. (8)

To make comparisons with [11] in the following, we denote f ∈ H+ if (7) holds on all
unstable curves Wu and f ∈ H− if (8) holds on all stable curves Ws .

Obviously, H±
� are vector spaces. If f,g ∈ H±

� are bounded, then fg ∈ H±
� with

Kfg = ‖f ‖∞Kg + Kf ‖g‖∞ and ϑfg = max(ϑf ,ϑg). (9)

The classes H±
� enjoy the following stability property under the action of F :

Lemma 4 If f ∈ H−
� , then f ◦ F ∈ H−

� with

ϑf ◦F = ϑf and Kf ◦F = Kf ϑf .

If f ∈ H+
� , then f ◦ F −1 ∈ H+

� with

ϑf ◦F −1 = ϑf and Kf ◦F −1 = Kf ϑf .

Proof Let f ∈ H−
� . Assume that Ws is a homogeneous stable manifold. If x, y ∈ Ws ,

then F x, F y ∈ F Ws which is also a homogeneous stable manifold. Hence, s−(F x, F y) =
1 + s−(x, y) and

∣
∣f (F x) − f (F y)

∣
∣ ≤ Kf ϑ

s−(F x,F y)

f = (Kf ϑf )ϑ
s−(x,y)

f .

The case f ∈ H+
� follows by reversing time. �
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Remark 5 The proof of the H−
� part of Lemma 4 relies on the fact that regularity is only

required on homogeneous stable manifolds. In [11], regularity on all stable curves is re-
quired, which results in the class H− of more regular functions. However, the F -image
of a stable curve is not necessarily a stable curve but rather tends to align with the un-
stable direction. One may then consider relaxing the regularity condition and restricting
to stable manifolds or H-components of stable manifolds.3 However, while the F -image
F W of such an H-component W is stable, it may have several H-components, in which
case s−(F x, F y) = 0 for some x, y ∈ W . The remedy is to give up more regularity and to
consider the class H−

� , i.e., observables that are dynamically Hölder continuous on homoge-
neous stable manifolds.

Similar remarks apply for the H+
� part.

Corollary 6 Suppose f̃ = f0 ◦ F i0 · · ·fk ◦ F ik , where 0 ≤ i0 < · · · < ik and each fi ∈ H−
�

is bounded. Setting K{fi } = maxi Kfi
and ϑ{fi } = maxi ϑfi

, we have f̃ ∈ H−
� with

ϑf̃ = ϑ{fi } and Kf̃ = K{fi }

∏
i ‖fi‖∞

mini ‖fi‖∞

ϑ
i0
{fi }

1 − ϑ{fi }
.

Similarly, if each fi ∈ H+
� is bounded, then f̃ = f0 ◦ F −i0 · · ·fk ◦ F −ik ∈ H+

� with ϑf̃ and
Kf̃ as above.

Proof Follows by induction from (9) and Lemma 4. �

Here we present a strengthened version of Theorem 4.3 of [11]. ϑΥ < 1, κ > 0, and
C0 > 0 are constants whose definitions can be found in that paper. The proof is at the end of
the section.

Theorem 7 For every bounded pair f ∈ H+
� , g ∈ H−

� , and n ≥ 0,

∣
∣
〈
f · g ◦ F n

〉 − 〈f 〉〈g〉∣∣ ≤ Bf,gθ
n
f,g,

where 〈 · 〉 denotes the μ-integral,

θf,g = [
max

{
ϑΥ ,ϑf ,ϑg, e

−1/κ
}]1/4

< 1, (10)

and

Bf,g = C0

(
Kf ‖g‖∞ + ‖f ‖∞Kg + ‖f ‖∞‖g‖∞

)
.

In [11] the formulation of the theorem requires f,g ∈ H− ∩ H+ but it is remarked that
the proof requires only the weaker assumption f ∈ H+ and g ∈ H−. We have further relaxed
the assumptions. This is an important point to us, as will now become apparent. Owing to
the stability properties of the classes H−

� and H+
� stated in Corollary 6, Theorem 7 immedi-

ately implies the following bound on multiple correlations. Generalization to nonconsecu-
tive times is easy.

3Such a case is recovered by collapsing the invariant cones into invariant lines [11].
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Corollary 8 Let f̃ = f0 · f1 ◦ F −1 · · ·fr ◦ F −r and g̃ = g0 · g1 ◦ F 1 · · ·gk ◦ F k , where
f0, . . . , fr ∈ H+

� and g0, . . . , gk ∈ H−
� are bounded and have identical parameters4 in the

sense that ϑfi
= ϑf0 , Kfi

= Kf0 , ‖fi‖∞ = ‖f0‖∞, ϑgi
= ϑg0 , Kgi

= Kg0 , and ‖gi‖∞ =
‖g0‖∞. Then

∣
∣〈f̃ · g̃ ◦ F n

〉 − 〈f̃ 〉〈g̃〉∣∣ ≤ Bf̃ ,g̃θ
n
f0,g0

for all n ≥ 0, where θf0,g0 is as in (10) and

Bf̃ ,g̃ = C0‖f0‖r
∞‖g0‖k

∞

(
Kf0

1 − ϑf0

‖g0‖∞ + ‖f0‖∞
Kg0

1 − ϑg0

+ ‖f0‖∞‖g0‖∞
)

.

Remark 9 The reader should pay attention to the form of the prefactor Bf̃ ,g̃ . Any growth
with r and k is associated with the norms ‖ · ‖∞, which measure size, not with the dynamical
Hölder constants K·, which measure regularity. Moreover, the rate of decay remains under
control (in fact unchanged) as r and k increase.

Corollary 8 strengthens Theorem 4.5 of [11] regarding the regularity assumption. We are
in position to prove

Theorem 10 If f ∈ H−
� ∩ H+

� is real-valued and bounded, then the Central Limit Theo-
rem (2) holds together with (4).

Proof Because the auto correlations Cf (n) decay sufficiently fast by Theorem 7, con-
dition (3) is satisfied which implies (4). According to Corollary 3, it suffices to bound
|〈w1 · Wr ◦ F p+q〉 − 〈w1〉〈Wr〉| (see the definitions of w1 and Wr in Theorem 1 and

Corollary 3). This involves functions of the form g = e
itf/

√
k VarSp ∈ H−

� ∩ H+
� , for which

‖g‖∞ = 1, ϑg = ϑf , and Kg ≤ (|t |/√k VarSp)Kf = O(1/
√

n)|t |Kf . We then use Corol-

lary 8 with w1 ◦ F −p assuming the role of f̃ and Wr that of g̃ (recall that F is invertible):

∣
∣〈w1 · Wr ◦ F p+q

〉 − 〈w1〉〈Wr〉
∣
∣ ≤ C0

(
O(1/

√
n)|t |Kf

1 − ϑf

+ 1

)

θ
q

f,f .

Finally, recall from above Theorem 1 that the quantity k appearing in Corollary 3 grows
as n1−a . Hence, limn→0 kθ

q

f,f = 0, and the CLT follows by Corollary 3. �

The class H−
� ∩ H+

� of observables f is wider than the class H− ∩ H+ of [11]. This is
not the main point—nor a mere curiosity. What is important is that we have been able to
derive the CLT directly from a pure pair correlation bound, namely Theorem 7. This could
not have been accomplished without extending the estimates to H−

� and H+
� for the reasons

explained in Remark 5.
Next, we give the argument leading to Theorem 7. The latter does not follow as a corol-

lary from the theorems of [11] but requires a careful study of the full proof of Chernov.
Instead of repeating large parts of [11] in which all the basic work has been done, we point
directly to the places in it where care is needed.

4This can always be arranged by scaling the functions and choosing the weakest parameters. It is also a
simple task to modify the statement so as to remove this condition. This does not serve our purpose here.
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Proof of Theorem 7 The Coupling Lemma [11, Lemma 3.4] does not concern observables
at all and is thus immune to relaxing their regularity. The Equidistribution Theorem [11,
Theorem 4.1] holds assuming just g ∈ H−

� .5 This is so, because regularity is only used in the
estimate (4.4) of the proof, and this estimate remains valid if g ∈ H−

� as the coupled points
x and y lie on the same homogeneous stable manifold6 according to the Coupling Lemma.

One then has to verify that relaxing the regularity condition for the pair correlation bound
of [11, Theorem 4.3] is legitimate. The bound on the quantity δα appearing below (4.11)
in [11] is clearly the only place where the regularity of g matters. This bound remains unaf-
fected if we assume g ∈ H−

� , since it only relies on the bound in Theorem 4.1 which remains
unchanged as we saw above. As far as the regularity of f is concerned, only homogeneous
unstable manifolds count. This is obvious from the definition of f̄ and the inequality (4.10).
Thus, it is enough to take f ∈ H+

� . �

Remark 11 In [11], the proof of Theorem 4.5 (which corresponds to Corollary 8 above) is
almost identical with the proof of Theorem 4.3 (which corresponds to Theorem 7 above). We
have seen above that Theorem 4.5 actually becomes a direct consequence of Theorem 4.3
after the classes H+

� and H−
� have been incorporated as in Theorem 7 and Corollary 8.

In [11], Theorem 4.3 is derived from an “equidistribution property” stated in Theo-
rem 4.1. Similarly, Theorem 4.5 is derived from Theorem 4.2 which states an “equidis-
tribution property” for multiple observation times. Both Theorems 4.1 and 4.2 require the
observables to be in H− ∩ H+, but as is pointed out in the paper, they hold under the weaker
assumption that the observables be in H−. Interestingly, Theorem 4.1 can be strengthened
so as to hold for H−

� . After this it implies directly a stronger form of Theorem 4.2 that holds
for H−

� .

4 Anosov Diffeomorphisms

Statistical properties of Anosov diffeomorphisms [1, 5] are well understood. We will exem-
plify here the passage from a strong pair correlation bound to the CLT with such maps. As
Anosov diffeomorphisms lack the singularities of Billiards, one rightly expects everything to
work as in the previous section. Notice, however, that throughout Sect. 3 it was assumed that
the space is 2-dimensional. We include this section because of its transparency and because
detailed pair correlation bounds are available in any dimension.

In the following, C1+α stands for differentiable functions whose first derivative is Cα ,
i.e., Hölder continuous with exponent 0 < α < 1. Let M be a d-dimensional Riemannian
manifold and F a transitive C1+α Anosov diffeomorphism on it. Let ds(x, y) denote the
distance between x and y along a stable manifold (= ∞ if x and y are not on the same
stable manifold, i.e., y /∈ Ws(x)). Similarly, let du(x, y) be the distance along an unsta-
ble manifold. There exists 0 < ν < 1 such that ds(F x, F y) ≤ νds(x, y) if x ∈ Ws(y) and
du(F −1x, F −1y) ≤ νdu(x, y) if x ∈ Wu(y).

We recall some definitions from [6]. Fix δ > 0 and 0 < β < 1. Define, for all f : M → C,

|f |s = sup
ds (x,y)≤δ

|f (x) − f (y)|
ds(x, y)β

, ‖f ‖s = ‖f ‖∞ + |f |s ,

5In the original text, the observable is denoted f . We have renamed it g not to create confusion in the rest of
this proof.
6In [11], homogeneous (un)stable manifolds are often called (un)stable H-manifolds.
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and

|f |u = sup
du(x,y)≤δ

|f (x) − f (y)|
du(x, y)α

, ‖f ‖u = ‖f ‖1 + |f |u,

where the L1-norm is defined with respect to the Riemannian volume. Finally, Cs stands for
the set of Borel measurable functions f : M → C with ‖f ‖s < ∞.

Although results similar to the one below have been known much earlier, we cite
[6, Corollary 2.1] due to the precise form of the bound there. The latter paper is based
on the coupling approach, but good bounds are obtainable by other means. In particular, we
mention the spectral method in [16] and [2] which also yields strong limit theorems [9, 15].

Theorem 12 There exists a unique F -invariant SRB measure μ. There exist 0 < θ < 1 and
C0 > 0 such that, for all f ∈ Cα and all g ∈ Cs ,

∣
∣
〈
f · g ◦ F n

〉 − 〈f 〉〈g〉∣∣ ≤ C0‖f ‖u‖g‖sθ
n,

where 〈 · 〉 stands for the μ-integral.

The following bound on multiple correlations is readily implied. Extending it to noncon-
secutive times is easy.

Corollary 13 Let f̃ = f0 · f1 ◦ F −1 · · ·fr ◦ F −r and g̃ = g0 · g1 ◦ F 1 · · ·gk ◦ F k , where
f0, . . . , fr ∈ Cα and g0, . . . , gk ∈ Cs . Assume also that each ‖fi‖∞ = ‖f0‖∞ and each
‖gi‖∞ = ‖g0‖∞. Then,

∣
∣〈f̃ · g̃ ◦ F n

〉 − 〈f̃ 〉〈g̃〉∣∣ ≤ Bf̃ ,g̃θ
n,

where

Bf̃ ,g̃ = C‖f0‖r
∞‖g0‖k

∞
(
max

i
|fi |u‖g0‖∞ + ‖f0‖∞ max

i
|gi |s + ‖f0‖∞‖g0‖∞

)
.

Proof Assuming ds(x, y) ≤ δ,

∣
∣g̃(x) − g̃(y)

∣
∣ ≤

k∑

l=0

∣
∣g0(x) · · ·gl−1

(
F l−1x

)∣∣
∣
∣gl

(
F lx

) − gl

(
F ly

)∣∣
∣
∣gl+1

(
F l+1y

) · · ·gk

(
F ky

)∣∣

≤
k∑

l=0

(∏

i �=l

‖gi‖∞
)∣

∣gl

(
F lx

) − gl

(
F ly

)∣
∣

≤
k∑

l=0

(∏

i �=l

‖gi‖∞
)

|gl |sds
(

F lx, F ly
)β

≤
k∑

l=0

(∏

i �=l

‖gi‖∞
)

|gl |sνβlds(x, y)β ≤
∏

i ‖gi‖∞
mini ‖gi‖∞

maxl |gl |s
1 − νβ

ds(x, y)β.

From this we obtain a bound on |g̃|s which implies

‖g̃‖s ≤ 1

1 − νβ

(∏

i

‖gi‖∞
)(

1 + maxl |gl |s
mini ‖gi‖∞

)
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and that g̃ ∈ Cs . It is clear that f̃ ∈ Cα . Mimicking the treatment of g̃ and using ‖f̃ ‖1 ≤
‖f̃ ‖∞‖1‖1, we also get

‖f̃ ‖u ≤ max(1,‖1‖1)

1 − να

(∏

i

‖fi‖∞
)(

1 + maxl |fl |u
mini ‖fi‖∞

)

.

We can then apply Theorem 12. �

Notice that the proof contains a stability result similar to Lemma 4. Following [14], the
Central Limit Theorem can then be established immediately with the aid of Corollary 13.

Theorem 14 If f ∈ Cα ∩ Cs is real-valued, then the Central Limit Theorem (2) holds to-
gether with (4).

Proof The proof of Theorem 10 applies, mutatis mutandis. �

Corollary 13 is interesting in its own right, as it gives a rather explicit bound on the
multiple correlations for generic transitive Anosov diffeomorphisms.

5 Invertible Case

5.1 Piecewise Expanding Maps

Here we present an example of a non-invertible, piecewise expanding, dynamical system in
which a known pair correlation bound (Theorem 15) can be used to prove the CLT. However,
this time the situation is not as straightforward, and an extra ingredient, the Lasota–Yorke
inequality appearing in (12), will be needed. The latter is known to imply a spectral gap and
further the CLT. Nonetheless, our proof is formally independent of spectral arguments and
we have chosen to include it as an interesting example of the usage of Corollary 3. In the
case at issue, a notably direct way of passing from the pair correlation bound to the CLT
has been established in [21]. It is based on a general result on martingale approximations
rather than bounding multiple correlations, which seems particularly well suited to the non-
invertible setting. An early CLT for piecewise expanding maps can be found for example
in [26].

Let F : [0,1] → [0,1] be a piecewise C2, uniformly expanding, map and suppose dμ =
φdx is an absolutely continuous invariant measure with respect to the Lebesgue measure dx

with density φ ∈ L1([0,1], dx). We write ‖f ‖1 = ∫ 1
0 |f |dx. A complex-valued function g

defined on [a, b] is of bounded variation, denoted g ∈ BV [a, b], if the total variation
∨b

a g =
sup(xi )

∑
i |g(xi) − g(xi+1)| is finite. Here the supremum runs over all finite partitions of

[a, b]. The following theorem [17] can be found in [20] up to trivial modifications.

Theorem 15 Suppose the system (F ,μ) is mixing and that infφ > 0. Then there exist con-
stants b > 0, K > 0, and Λ ∈ (0,1) such that, for each f ∈ L1([0,1], dx) and g ∈ BV [0,1]

∣
∣
∣
∣
∣

∫ 1

0
f ◦ F ng dx −

∫ 1

0
f dμ

∫ 1

0
g dx

∣
∣
∣
∣
∣
≤ KΛ−n‖f ‖1

(

‖g‖1 + b

1∨

0

g

)

. (11)

Remark 16 Under the assumptions of the theorem, φ ∈ BV [0,1].
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Let us denote λ = inf |F ′| and assume λ > 2, by considering a sufficiently large power
of F if necessary. Let L stand for the transfer operator of F with respect to the Lebesgue
measure:

(Lg)(x) =
∑

y∈F −1x

g(y)

|F ′(y)| .

There exists a constant A, depending on the map F , such that

1∨

0

(Lg) ≤ 2λ−1
1∨

0

g + A‖g‖1 (12)

holds for all g ∈ BV [0,1] [18]. Together, (11) and (12) imply the CLT in a straightforward
fashion, as we will now see.

Remark 17 The Lasota–Yorke inequality (12) is usually used with real-valued functions.
From its proof in [20] it is apparent that it holds true for complex-valued functions. Also the
bound in (11) extends to complex-valued functions. First assume f = u + iv is complex and
g is real, use (11), and notice that ‖u‖1 + ‖v‖1 ≤ √

2‖f ‖1. Next, assume also g = t + iw is
complex, use (11), and notice that

∨1
0 t + ∨1

0 w ≤ 2
∨1

0 g.

Setting Wr = w1 · · ·wr−1 and 〈f 〉 = ∫ 1
0 f dμ as before,

〈w1 · · ·wr〉 = 〈
w1 · Wr ◦ F p+q

〉 =
∫ 1

0
Lp−1(φw1) · Wr ◦ F q+1 dx. (13)

Moreover,
∫ 1

0
Lp−1(φw1) dx = 〈w1〉 and

∫ 1

0
Wr dμ = 〈w2 · · ·wr〉,

where invariance has been used. Hence, (11) yields

∣
∣〈w1 · · ·wr〉 − 〈w1〉〈w2 · · ·wr〉

∣
∣ ≤ KΛ−q−1

(

1 + b

1∨

0

Lp−1(φw1)

)

, (14)

as |wi | = 1 implies ‖Wr‖1 = 1 and ‖Lp−1(φw1)‖1 ≤ ‖φw1‖1 = ‖φ‖1 = 1.
We are done if we can establish a good bound on

∨1
0 Lp−1(φw1). A straightforward iter-

ation of (12) will not suffice, because
∨1

0(φw1) seems to grow at a dominating exponential
rate due to the presence of F p−1 in w1. Controlling the growth of total variation is precisely
the reason we introduced the regularizing transfer operator L in (13).

Let us denote Gp = φ · g · g ◦ F · · ·g ◦ F p , where g = e
itf/

√
k VarSp . In particular,

Gp−1 = φw1. With the aid of the identity

L(f ◦ F · g) = f · Lg

we are able to write the recursion relation

LpGp = Lp
(
Gp−1 · g ◦ F p

) = Lp(Gp−1) · g = L
(

Lp−1Gp−1
) · g,
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because Lp is the transfer operator of F p . Now,

1∨

0

LpGp ≤ ‖g‖∞
1∨

0

L
(

Lp−1Gp−1

) + ‖LpGp−1‖∞
1∨

0

g,

where |g| = 1 yields |LpGp−1| ≤ Lp|Gp−1| = Lpφ = φ so that ‖LpGp−1‖∞ ≤ ‖φ‖∞.
By (12),

1∨

0

LpGp ≤ 2λ−1
1∨

0

Lp−1Gp−1 + A + ‖φ‖∞
1∨

0

g,

which can be iterated to prove

1∨

0

LpGp ≤ (
2λ−1

)p
1∨

0

(φg) + A + ‖φ‖∞
∨1

0 g

1 − 2λ−1
≤ (

2λ−1
)p

1∨

0

φ + A + 2‖φ‖∞
∨1

0 g

1 − 2λ−1

for every value of p. Finally,
∨1

0 g ≤ (|t |/√k VarSp)
∨1

0 f = O(1/
√

n)
∨1

0 f for fixed val-

ues of t . Hence, supn

∨1
0 Lp−1(φw1) < ∞ and

∣
∣〈w1 · · ·wr〉 − 〈w1〉〈w2 · · ·wr〉

∣
∣ ≤ CΛ−q (15)

for all 2 ≤ r ≤ k and all n. This bound implies the CLT due to Corollary 3.
We finish with a discussion of the map F : x �→ 2x mod 1. In this case the situation is

quite a bit simpler than above, and (12) is not needed. First of all, φ ≡ 1. Second,
∨1

0 Lg ≤
1
2

∨ 1
2
0 g + 1

2

∨1
1
2
g = 1

2

∨1
0 g and

∨1
0 g ◦ F � ≤ 2�(

∨1
0 g +|g(1)−g(0)|) ≤ 2�+1

∨1
0 g hold for

all g ∈ BV . Using these facts and the bound
∨1

0 fg ≤ ∨1
0 f ‖g‖∞ +‖f ‖∞

∨1
0 g recursively,

1∨

0

Lp−1w1 ≤ 1

2p−1

1∨

0

w1 ≤ 1

2p−1
‖g‖p−1

∞
p−1∑

�=0

1∨

0

g ◦ F � ≤ 4‖g‖p−1
∞

1∨

0

g.

Finally, we recall that ‖g‖∞ = 1 and insert the bound above into (14). Again, (15) follows.

5.2 Bernoulli Shift

For simplicity, we discuss the full one-sided shift of two symbols. It is isomorphic to the
map x �→ 2x mod 1 above, but an independent treatment may appeal to the reader. Let
M = {0,1}Z+ be the set of sequences ω = (ω1,ω2, . . .) with each ωi ∈ {0,1} and denote by
F : M → M the shift operator (F ω)i = ωi+1. We fix a Bernoulli measure ν on the symbol
set {0,1} and write μ = ⊗

Z+ ν for the infinite product measure. Then μ is F -invariant.
We can equip M with the metric d(ω,ω′) = ∑∞

i=1 2−i |ωi −ω′
i | and then consider Hölder

continuous functions g satisfying |g|η ≡ supω �=ω′ |g(ω)−g(ω′)|
d(ω,ω′)η < ∞ with exponent η ∈ (0,1).

Theorem 18 Let f ∈ L1(μ) and g be Hölder continuous with exponent η. Then

∣
∣〈f ◦ F n · g〉 − 〈f 〉〈g〉∣∣ ≤ ‖f ‖1|g|η2−ηn n ≥ 0. (16)
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The angular brackets refer to integration with respect to μ.

Proof For each ω, set ω≤n = (ω1, . . . ,ωn) and ω>n = (ωn+1,ωn+2, . . .). Define gn(ω≤n) =∫
g(ω≤n, ω̃) dμ(ω̃). Then

〈
f ◦ F n · gn

〉 =
∫

f (ω>n)gn(ω≤n) dμ(ω) = 〈f 〉〈gn〉 = 〈f 〉〈g〉,

so that

∣
∣
〈
f ◦ F n · g〉 − 〈f 〉〈g〉∣∣ = ∣

∣
〈
f ◦ F n · (g − gn)

〉∣
∣ ≤ ‖f ‖1 sup

ω

∫ ∣
∣g(ω) − g(ω≤n, ω̃)

∣
∣dμ(ω̃).

The Hölder property of g implies the desired bound. �

Since d(F ω, F ω′) = 2d(ω,ω′) − |ω − ω′| ≤ 2d(ω,ω′), we have

|g ◦ F |η ≤ 2η|g|η. (17)

It is easy to check that Lg(ω) = ∫
g(ω0,ω)dν(ω0) defines the transfer operator L of F , i.e.,

〈f ◦ F · g〉 = 〈f · Lg〉. Moreover,

|Lg|η ≤ 2−η|g|η. (18)

Next, we use Corollary 3. By (16),

∣
∣
〈
w1 · Wr ◦ F p+q

〉 − 〈w1〉〈Wr〉
∣
∣ = ∣

∣
〈

Lpw1 · Wr ◦ F q
〉 − 〈

Lpw1

〉〈Wr〉
∣
∣ ≤ ‖Wr‖1|Lpw1|η2−ηq,

where ‖Wr‖1 ≤ 1. Using (17) and (18), we see that |Lpw1|η ≤ 2−ηp|w1|η ≤ Cp, because w1

(see (5)) is the product of p Hölder continuous functions. It now follows from the estimate
above and Corollary 3 that the CLT holds—again using nothing but pair correlation decay.

6 Conclusion

We have argued that detailed information about pair correlations for suitable classes of ob-
servables may be sufficient for proving the Central Limit Theorem for a given dynamical
system. We have then shown that, for Sinai Billiards in two dimensions as well as transitive
Anosov diffeomorphisms in any dimension, such information can actually be encoded into
a single pair correlation estimate. In the case of Billiards, the estimate has been obtained by
relaxing the regularity assumptions of an estimate in [11]. An estimate in [6] works readily
in the Anosov case.

Interesting in its own right is the fact that in both cases the pair correlation estimates
implied good estimates on multiple correlations, which tend to be difficult to bound. As sug-
gested in [11], such bounds yield limit theorems more sophisticated than the CLT, including
the Weak Invariance Principle and Almost Sure Invariance Principle. We have chosen not to
discuss these extensions here as it would seem to produce little that is new.

Let us mention that the pair correlation bound for Billiards is the product of a coupling
argument, originally due to Young [27] and further refined by Dolgopyat (see [11, 13],
and [14]). The proof of the pair correlation bound for Anosov diffeomorphisms in [6] is
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likewise based on a coupling method. This approach has turned out to be very flexible and
adaptable to many kinds of systems with some hyperbolicity.

It is then informative to recognize that the proof of the CLT for Billiards presented above
depends, at the formal level, little on the fact that the rate of correlation decay is exponen-
tial. Rather, the stability property of the classes of observables (Lemma 4) and the form of
the prefactor in the correlation estimate (Remark 9) are the ingredients that count. Similar
remarks apply to the Anosov case. It would be interesting to know if it is possible to derive
a pair correlation bound that implies a strong bound on multiple correlations and hence the
CLT in a slowly mixing example.

We have also discussed non-invertible systems in the setting of piecewise expanding
interval maps and observed that the situation seems rather different. In the linear case (x �→
2x mod 1 in Sect. 5.1 and Bernoulli shift in Sect. 5.2) our scheme works well. Further work
is needed.

Finally, we propose the following objective, which has motivated our work, to think
about: formulate checkable conditions on pair correlations for a dynamical system—likely
more complicated than a single estimate—under which the CLT holds. Advances in this
direction are not only of theoretical interest but could benefit the applied scientist.
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