A Strong Pair Correlation Bound Implies the CLT for Sinai Billiards

Mikko Stenlund

Received: 17 December 2009 / Accepted: 30 April 2010 / Published online: 12 May 2010
© Springer Science+Business Media, LLC 2010

Abstract

We investigate the possibility of proving the Central Limit Theorem (CLT) for Dynamical Systems using only information on pair correlations. A strong bound on multiple correlations is known to imply the CLT (Chernov and Markarian in Chaotic Billiards, 2006). In Chernov's paper (J. Stat. Phys. 122(6), 2006), such a bound is derived for dynamically Hölder continuous observables of dispersing Billiards. Here we weaken the regularity assumption and subsequently show that the bound on multiple correlations follows directly from the bound on pair correlations. Thus, a strong bound on pair correlations alone implies the CLT, for a wider class of observables. The result is extended to Anosov diffeomorphisms in any dimension. Some non-invertible maps are also considered.

Keywords Sinai billiards • Lorentz gas • Anosov diffeomorphisms • Central limit theorem

1 Introduction

The study of statistical properties of dynamical systems began its blossom after the discovery of Markov partitions for smooth hyperbolic systems. Such a partition, when it exists, allows the system to be seen as a shift acting on infinite sequences of finitely many symbols. Using spectral arguments, Markov partitions were used to import results from the statistical mechanics of Gibbs measures. Among these were exponential decay of correlations and the Central Limit Theorem (CLT) for Anosov and Axiom A systems [5].

Often finite Markov partitions fail to exist, as is the case for Sinai Billiards. For understanding statistical properties of Billiards, Bunimovich and Sinai [7] introduced the idea of approximations using Markov Chains with countably many states satisfying a Doeblin condition. This way, the authors obtained the CLT, Donsker's Invariance Principle, and stretched

[^0]exponential decay of correlations. Since then, Central Limit Theorems and mixing results for a range of systems have been proven by many authors and exponential decay of correlations for Billiards has been established [27].

In the context of dynamical systems, the question whether fast decay of pair correlations implies the CLT remains open. Hopes that the answer is positive are not completely without warrant: we have been unable to locate examples in the literature in which pair correlations decay rapidly but the CLT fails. On the other hand, cases in which the CLT has been inferred from little more than a pair correlation bound are few. The goal of this paper is to investigate the possibility of using information solely regarding pair correlations for claiming control over multiple correlations, and further for obtaining the CLT. In a physically interesting example, we show that a single pair correlation bound implies the CLT for Sinai Billiards in a simple fashion. We also prove a similar result for Anosov diffeomorphisms in arbitrary dimension.

Let $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$ be a dynamical system with an invariant measure μ. Measurable functions $f: \mathcal{M} \rightarrow \mathbb{C}$ are called observables and their averages are denoted $\langle f\rangle=\int_{\mathcal{M}} f d \mu$. Recall that a dynamical system is mixing if $\lim _{n \rightarrow \infty}\left\langle f \cdot g \circ \mathcal{F}^{n}\right\rangle=\langle f\rangle\langle g\rangle$ for all $f, g \in L^{2}(\mu)$.

For a mixing system, a typical bound on pair correlations is

$$
\begin{equation*}
\left|\left\langle f \cdot g \circ \mathcal{F}^{n}\right\rangle-\langle f\rangle\langle g\rangle\right| \leq c_{f, g} r_{f, g}(n) \tag{1}
\end{equation*}
$$

for all n, given that f and g belong to some suitable classes of observables, \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Here the prefactor $c_{f, g}$ usually depends on a few properties of f and g-such as their norms-rather than the details of the functions. Moreover, as $n \rightarrow \infty$, the rate factor $r_{f, g}(n) \rightarrow 0$ at a rate that only depends on a few properties of f and g. For instance, the rate could be exponential and the exponent could depend on the regularity-say the Hölder exponents-of the observables.

Assume now that f is real-valued and consider sums of the form

$$
S_{n}=\sum_{j=0}^{n-1} f \circ \mathcal{F}^{j}
$$

Recall that the Central Limit Theorem (CLT) states that the distribution of the normalized sequence $\left(S_{n}-n\langle f\rangle\right) / \sqrt{\operatorname{Var} S_{n}}$ tends to the standard Gaussian distribution:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(\frac{S_{n}-n\langle f\rangle}{\sqrt{\operatorname{Var} S_{n}}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2} d s \quad \forall t \in \mathbb{R} . \tag{2}
\end{equation*}
$$

If the sequence of auto correlations $C_{f}(n)=\left\langle f \cdot f \circ \mathcal{F}^{n}\right\rangle-\langle f\rangle^{2}$ has a finite first moment, i.e.,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|C_{f}(n)\right|<\infty \tag{3}
\end{equation*}
$$

then a direct computation reveals that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\operatorname{Var} S_{n}}{n}=\sigma_{f}^{2}=C_{f}(0)+2 \sum_{i=1}^{\infty} C_{f}(i) \tag{4}
\end{equation*}
$$

In fact a bit more is true under condition (3), namely $\operatorname{Var} S_{n}-n \sigma_{f}^{2}=\mathcal{O}(1)$. It is our standing assumption that (3) holds and that $\sigma_{f}^{2}>0 .{ }^{1}$ In this case $\sqrt{\operatorname{Var} S_{n}}$ can be replaced by $\sqrt{n} \sigma_{f}$ in (2). The summability of the auto correlations, at the very least, is necessary for the CLT to hold in this form. Establishing (1) has been an essential, but not sufficient, part of CLT proofs in the literature.

In [14], it is shown that the CLT is actually implied by good decay of multiple correlations. The authors give the Sinai Billiards as an application, and deduce the CLT from the strong bound on multiple correlations obtained in [11].

Multiple correlations can generically be viewed as pair correlations: assuming f_{1}, \ldots, f_{k} are observables and $n \geq 0$ and $0 \leq i_{1}<\cdots<i_{l}<i_{l+1}<\cdots<i_{k}$ are integers, we have

$$
\left\langle f_{1} \circ \mathcal{F}^{i_{1}} \cdots f_{l} \circ \mathcal{F}^{i_{l}} \cdot f_{l+1} \circ \mathcal{F}^{i_{l+1}+n} \cdots f_{k} \circ \mathcal{F}^{i_{k}+n}\right\rangle=\left\langle\tilde{f} \cdot \tilde{g} \circ \mathcal{F}^{n}\right\rangle
$$

if we define

$$
\tilde{f}=f_{1} \circ \mathcal{F}^{i_{1}} \cdots f_{l} \circ \mathcal{F}^{i_{l}} \quad \text { and } \quad \tilde{g}=f_{l+1} \circ \mathcal{F}^{i_{l+1}} \cdots f_{k} \circ \mathcal{F}^{i_{k}} .
$$

This representation, the choice of l and n, is rather arbitrary, but if the time gap n can be chosen large, one may hope to benefit from (1) and claim control over multiple correlations in order to verify that the CLT holds. However, even if one is able to prove that $\tilde{f} \in \mathcal{H}_{1}$ and $\tilde{g} \in \mathcal{H}_{2}$, which is not always the case, it may turn out that $c_{\tilde{f}, \tilde{g}}$ or $r_{\tilde{f}, \tilde{g}}(n)$ is substantially worse than needed for the argument to work. In the following sections, the idea of controlling multiple correlations through pair correlations is developed further. In particular, applications to Billiards and Anosov diffeomorphisms are presented.

Unified approaches for obtaining the CLT for dynamical systems are available in the literature $[10,21]$. They are general, but of quite different flavor compared to this work. The paper [10] has been formulated in terms of mixing properties of partitions of the phase space and is based on Markov approximations. Martingale approximations are used in [21]; see also [22]. In the invertible case, the latter too requires refined information about partitions, their measurability, existence of conditional measures, and estimates on the size of their elements. See, however, the first paragraph of Sect. 5.1 discussing the non-invertible case. It is clear that, for the relevant parts, equivalent information must be contained in any CLT proof; in our examples it has surprisingly been encoded into a strong pair correlation bound.

For each system considered in this paper, the CLT has already been established earlier. Our purpose is to present a new way of obtaining these crucially important results using correlation functions, which are objects that physicists are very familiar with.

2 Obtaining the CLT from the Decay of Multiple Correlations

Here we make precise the informal statement that sufficient control over multiple correlations implies the CLT. Theorem 1 is obtained from the proof of Theorem 7.43 in [14]. As all the necessary details can be found in [14], we omit them here. Let us nevertheless mention that the backbone is a clever trick due to Bernstein [3, 4] for approximating sums of

[^1]weakly dependent random variables by those of independent ones. The CLT is then inferred by checking that a Lindeberg condition on the independent variables is satisfied.

To formulate the theorem, we first partition the time interval [$0, n-1$] into an alternating sequence of long and short intervals. The long intervals are of length ${ }^{2} p=\left[n^{a}\right]$ and the short ones are of length $q=\left[n^{b}\right]$ with $0<b<a<\frac{1}{2}$. Hence, there are precisely $k=[n /(p+q)] \sim n^{1-a}$ pairs of long and short intervals (and a remaining interval of length $n-k(p+q)<p+q)$.

Theorem 1 Denote $g=e^{i t f / \sqrt{k \operatorname{Var} S_{p}}}$ and, for each $1 \leq r \leq k$,

$$
\begin{equation*}
w_{r}=\left(g \cdot g \circ \mathcal{F} \cdots g \circ \mathcal{F}^{p-1}\right) \circ \mathcal{F}^{(p+q)(r-1)}=w_{1} \circ \mathcal{F}^{(p+q)(r-1)} . \tag{5}
\end{equation*}
$$

If (3) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle w_{1} \cdots w_{k}\right\rangle-\left\langle w_{1}\right\rangle \cdots\left\langle w_{k}\right\rangle\right|=0 \quad \forall t \in \mathbb{R} \tag{6}
\end{equation*}
$$

hold, then the CLT (2) is satisfied together with (4).
Remark 2 We stress that p, q, k, g, and w_{r} all depend on n. Notice that a time gap of length q separates the variables w_{r} which are 'supported' on the long intervals of length p.

To shed a bit of light on the method of [14], let us denote by $\Delta_{r}, 1 \leq r \leq k$, the long intervals and split the sum

$$
S_{n}=S_{n}^{\prime}+S_{n}^{\prime \prime},
$$

where S_{n}^{\prime} and $S_{n}^{\prime \prime}$ are the sum over all the long intervals, $\bigcup_{r} \Delta_{r}$, and the remainder, $[0, n-1] \backslash \bigcup_{r} \Delta_{r}$, respectively:

$$
S_{n}^{\prime}=\sum_{r=1}^{k} S_{p}^{(r)} \quad \text { with } \quad S_{p}^{(r)}=\sum_{i \in \Delta_{r}} f \circ \mathcal{F}^{i} .
$$

Notice that the number of long and short intervals as well as the length of each interval increases as n increases. However, the fraction of the entire time interval [$0, n-1$] covered by $\bigcup_{r} \Delta_{r}$ tends to 1 , because

$$
\lim _{n \rightarrow \infty} \frac{p+q}{p}=\lim _{n \rightarrow \infty} \frac{\left[n^{a}\right]+\left[n^{b}\right]}{\left[n^{a}\right]}=1
$$

Therefore, the sum $S_{n}^{\prime \prime}$ can asymptotically be neglected. Moreover, as the variables $f \circ \mathcal{F}^{i}$ are weakly dependent and as the gaps between the long intervals Δ_{r} increase with n, the sums $S_{p}^{(r)}$ become asymptotically independent. This way, S_{n} can be approximated by a sum of i.i.d. random variables and the asymptotic normality of S_{n} / \sqrt{n} be verified.

It appears that $[11,14]$ are the first places where the possibility of obtaining the CLT based solely on a strong bound on multiple correlations has been explicitly mentioned, although Bernstein's trick has been introduced into the study of dynamical systems at least as early as [7]. We would like to stress that it is not the rate of decay per se, but the form of the bound on multiple correlations that counts in the proof appearing in [14]; hence our

[^2]choice to call such bounds strong as opposed to, say, exponential. See Corollary 8 and Remark 9. Indeed, as explained in the Introduction, fast decay of pair correlations could yield fast decaying bounds on multiple correlations which, however, are too weak to be used in conjunction with Theorem 1 for deducing the CLT.

We remind the reader once more that each w_{r} in (6) depends on n. Nevertheless, we mimic pair correlation notation by rewriting the multiple correlations in (6) as the telescoping sums

$$
\left\langle w_{1} \cdots w_{k}\right\rangle-\left\langle w_{1}\right\rangle \cdots\left\langle w_{k}\right\rangle=\sum_{r=1}^{k-1}\left\langle w_{1}\right\rangle \cdots\left\langle w_{r-1}\right\rangle\left[\left\langle w_{r} \cdots w_{k}\right\rangle-\left\langle w_{r}\right\rangle\left\langle w_{r+1} \cdots w_{k}\right\rangle\right] .
$$

Recalling $\left|\left\langle w_{r}\right\rangle\right| \leq 1$ and using stationarity, we obtain
Corollary 3 Denote $W_{r}=w_{1} \cdots w_{r-1}$. If (3) and

$$
\lim _{n \rightarrow \infty} \sum_{r=2}^{k}\left|\left\langle w_{1} \cdot W_{r} \circ \mathcal{F}^{p+q}\right\rangle-\left\langle w_{1}\right\rangle\left\langle W_{r}\right\rangle\right|=0 \quad \forall t \in \mathbb{R}
$$

hold, then the CLT (2) is satisfied together with (4).
In this paper we argue that, while fast decay of pair correlations alone may not suffice for the CLT to hold, detailed information about their structure sometimes will. Below we will show that two interesting classes of dynamical systems, Sinai Billiards (see [12] for applications) and Anosov diffeomorphisms, actually both admit a strong pair correlation bound that yields the CLT directly by supplying strong enough bounds on multiple correlations. As far as the author knows, these are the first examples of the kind.

Let us stress that our interest below is not in improving existing estimates. Instead, we wish to demonstrate a new connection between pair correlations and the Central Limit Theorem. For doing so, some generalizations of existing literature-resulting in classes of observables which may turn out useful per se-are required.

3 Sinai Billiards

Here Sinai Billiards [23] refers to the 2D periodic Lorentz gas with dispersing scatterers and finite horizon (finite free path). We will only list some facts about such systems, but the reader unfamiliar with Billiards should be able to follow the reasoning by taking the estimates in this section for granted. For background, see [14, 24, 25].

Recall that the dynamics of Sinai Billiards induces a billiard map $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$ on the collision space \mathcal{M}, which preserves a smooth ergodic SRB measure μ. This map is uniformly hyperbolic but has a set of singularities due to tangential collisions. In a standard representation of the collision space, tangential collisions correspond to horizontal linesthe boundary \mathcal{S}_{0} of \mathcal{M}. The map also suffers of unbounded distortion because of the same reason. In order to deal with this nuisance, the space \mathcal{M} is divided by countably many horizontal lines into a disjoint union of strips [8, 11], on each of which distortions can be controlled. Let us denote the union of such lines \mathbb{S}. This way the space is divided by $\mathcal{S}_{0} \cup \mathbb{S}$ into countably many connected components which we call homogeneity strips or briefly H-strips.

There are two special families of cones associated with billiards. The unstable cones are invariant under \mathcal{F} and the stable ones under \mathcal{F}^{-1}. A smooth curve is called stable if at every point its tangent vector belongs to the stable cone. The H -strips divide any stable curve into disjoint H-components. A stable curve W is a stable manifold if $\mathcal{F}^{n} W$ is a stable curve for all $n>0$. Notice that the image $\mathcal{F}^{n} W$ of a stable manifold W shrinks as n increases, but may well consist of several H-components. A stable manifold W is a homogeneous stable manifold, if $\mathcal{F}^{n} W$ has just one H-component for all $n>0$. Unstable curves, unstable manifolds, and homogeneous unstable manifolds are defined analogously by considering unstable cones and backward iterates of \mathcal{F}.

For all x, y, we define the future separation time

$$
s_{+}(x, y)=\min \left\{n \geq 0: \mathcal{F}^{n} x \text { and } \mathcal{F}^{n} y \text { lie in different H-strips }\right\}
$$

and the past separation time

$$
s_{-}(x, y)=\min \left\{n \geq 0: \mathcal{F}^{-n} x \text { and } \mathcal{F}^{-n} y \text { lie in different H-strips }\right\} .
$$

We will now introduce two notions of regularity. We say f is dynamically Hölder continuous on homogeneous unstable manifolds and write $f \in \mathcal{H}_{\star}^{+}$, if there exist $K_{f} \geq 0$ and $\vartheta_{f} \in(0,1)$ such that, for any homogeneous unstable manifold W^{u},

$$
\begin{equation*}
|f(x)-f(y)| \leq K_{f} \vartheta_{f}^{s_{+}(x, y)} \quad \forall x, y \in W^{u} . \tag{7}
\end{equation*}
$$

Similarly, we say f is dynamically Hölder continuous on homogeneous stable manifolds and write $f \in \mathcal{H}_{\star}^{-}$, if there exist $K_{f} \geq 0$ and $\vartheta_{f} \in(0,1)$ such that, for any homogeneous stable manifold W^{s},

$$
\begin{equation*}
|f(x)-f(y)| \leq K_{f} \vartheta_{f}^{s-(x, y)} \quad \forall x, y \in W^{s} . \tag{8}
\end{equation*}
$$

To make comparisons with [11] in the following, we denote $f \in \mathcal{H}^{+}$if (7) holds on all unstable curves W^{u} and $f \in \mathcal{H}^{-}$if (8) holds on all stable curves W^{s}.

Obviously, $\mathcal{H}_{\star}^{ \pm}$are vector spaces. If $f, g \in \mathcal{H}_{\star}^{ \pm}$are bounded, then $f g \in \mathcal{H}_{\star}^{ \pm}$with

$$
\begin{equation*}
K_{f g}=\|f\|_{\infty} K_{g}+K_{f}\|g\|_{\infty} \quad \text { and } \quad \vartheta_{f g}=\max \left(\vartheta_{f}, \vartheta_{g}\right) \tag{9}
\end{equation*}
$$

The classes $\mathcal{H}_{\star}^{ \pm}$enjoy the following stability property under the action of \mathcal{F} :
Lemma 4 If $f \in \mathcal{H}_{\star}^{-}$, then $f \circ \mathcal{F} \in \mathcal{H}_{\star}^{-}$with

$$
\vartheta_{f \circ \mathcal{F}}=\vartheta_{f} \quad \text { and } \quad K_{f \circ \mathcal{F}}=K_{f} \vartheta_{f} .
$$

If $f \in \mathcal{H}_{\star}^{+}$, then $f \circ \mathcal{F}^{-1} \in \mathcal{H}_{\star}^{+}$with

$$
\vartheta_{f \circ \mathcal{F}-1}=\vartheta_{f} \quad \text { and } \quad K_{f \circ \mathcal{F}-1}=K_{f} \vartheta_{f} .
$$

Proof Let $f \in \mathcal{H}_{\star}^{-}$. Assume that W^{s} is a homogeneous stable manifold. If $x, y \in W^{s}$, then $\mathcal{F} x, \mathcal{F} y \in \mathcal{F} W^{s}$ which is also a homogeneous stable manifold. Hence, $s_{-}(\mathcal{F} x, \mathcal{F} y)=$ $1+s_{-}(x, y)$ and

$$
|f(\mathcal{F} x)-f(\mathcal{F} y)| \leq K_{f} \vartheta_{f}^{s_{-}(\mathcal{F} x, \mathcal{F} y)}=\left(K_{f} \vartheta_{f}\right) \vartheta_{f}^{s_{-}(x, y)}
$$

The case $f \in \mathcal{H}_{\star}^{+}$follows by reversing time.

Remark 5 The proof of the \mathcal{H}_{\star}^{-}part of Lemma 4 relies on the fact that regularity is only required on homogeneous stable manifolds. In [11], regularity on all stable curves is required, which results in the class \mathcal{H}^{-}of more regular functions. However, the \mathcal{F}-image of a stable curve is not necessarily a stable curve but rather tends to align with the unstable direction. One may then consider relaxing the regularity condition and restricting to stable manifolds or H -components of stable manifolds. ${ }^{3}$ However, while the \mathcal{F}-image $\mathcal{F} W$ of such an H-component W is stable, it may have several H-components, in which case $s_{-}(\mathcal{F} x, \mathcal{F} y)=0$ for some $x, y \in W$. The remedy is to give up more regularity and to consider the class \mathcal{H}_{\star}^{-}, i.e., observables that are dynamically Hölder continuous on homogeneous stable manifolds.

Similar remarks apply for the \mathcal{H}_{\star}^{+}part.
Corollary 6 Suppose $\tilde{f}=f_{0} \circ \mathcal{F}^{i_{0}} \cdots f_{k} \circ \mathcal{F}^{i_{k}}$, where $0 \leq i_{0}<\cdots<i_{k}$ and each $f_{i} \in \mathcal{H}_{\star}^{-}$ is bounded. Setting $K_{\left\{f_{i}\right\}}=\max _{i} K_{f_{i}}$ and $\vartheta_{\left\{f_{i}\right\}}=\max _{i} \vartheta_{f_{i}}$, we have $\tilde{f} \in \mathcal{H}_{\star}^{-}$with

$$
\vartheta_{\tilde{f}}=\vartheta_{\left\{f_{i}\right\}} \quad \text { and } \quad K_{\tilde{f}}=K_{\left\{f_{i}\right\}} \frac{\prod_{i}\left\|f_{i}\right\|_{\infty}}{\min _{i}\left\|f_{i}\right\|_{\infty}} \frac{\vartheta_{\left\{f_{i}\right\}}^{i_{0}}}{1-\vartheta_{\left\{f_{i}\right\}}} .
$$

Similarly, if each $f_{i} \in \mathcal{H}_{\star}^{+}$is bounded, then $\tilde{f}=f_{0} \circ \mathcal{F}^{-i_{0}} \cdots f_{k} \circ \mathcal{F}^{-i_{k}} \in \mathcal{H}_{\star}^{+}$with $\vartheta_{\tilde{f}}$ and $K_{\tilde{f}}$ as above.

Proof Follows by induction from (9) and Lemma 4.
Here we present a strengthened version of Theorem 4.3 of [11]. $\vartheta_{\Upsilon}<1, \kappa>0$, and $C_{0}>0$ are constants whose definitions can be found in that paper. The proof is at the end of the section.

Theorem 7 For every bounded pair $f \in \mathcal{H}_{\star}^{+}, g \in \mathcal{H}_{\star}^{-}$, and $n \geq 0$,

$$
\left|\left\langle f \cdot g \circ \mathcal{F}^{n}\right\rangle-\langle f\rangle\langle g\rangle\right| \leq B_{f, g} \theta_{f, g}^{n},
$$

where $\langle\cdot\rangle$ denotes the μ-integral,

$$
\begin{equation*}
\theta_{f, g}=\left[\max \left\{\vartheta_{\Upsilon}, \vartheta_{f}, \vartheta_{g}, e^{-1 / \kappa}\right\}\right]^{1 / 4}<1, \tag{10}
\end{equation*}
$$

and

$$
B_{f, g}=C_{0}\left(K_{f}\|g\|_{\infty}+\|f\|_{\infty} K_{g}+\|f\|_{\infty}\|g\|_{\infty}\right)
$$

In [11] the formulation of the theorem requires $f, g \in \mathcal{H}^{-} \cap \mathcal{H}^{+}$but it is remarked that the proof requires only the weaker assumption $f \in \mathcal{H}^{+}$and $g \in \mathcal{H}^{-}$. We have further relaxed the assumptions. This is an important point to us, as will now become apparent. Owing to the stability properties of the classes \mathcal{H}_{\star}^{-}and \mathcal{H}_{\star}^{+}stated in Corollary 6 , Theorem 7 immediately implies the following bound on multiple correlations. Generalization to nonconsecutive times is easy.

[^3]Corollary 8 Let $\tilde{f}=f_{0} \cdot f_{1} \circ \mathcal{F}^{-1} \cdots f_{r} \circ \mathcal{F}^{-r}$ and $\tilde{g}=g_{0} \cdot g_{1} \circ \mathcal{F}^{1} \cdots g_{k} \circ \mathcal{F}^{k}$, where $f_{0}, \ldots, f_{r} \in \mathcal{H}_{\star}^{+}$and $g_{0}, \ldots, g_{k} \in \mathcal{H}_{\star}^{-}$are bounded and have identical parameters ${ }^{4}$ in the sense that $\vartheta_{f_{i}}=\vartheta_{f_{0}}, K_{f_{i}}=K_{f_{0}},\left\|f_{i}\right\|_{\infty}=\left\|f_{0}\right\|_{\infty}, \vartheta_{g_{i}}=\vartheta_{g_{0}}, K_{g_{i}}=K_{g_{0}}$, and $\left\|g_{i}\right\|_{\infty}=$ $\left\|g_{0}\right\|_{\infty}$. Then

$$
\left|\left\langle\tilde{f} \cdot \tilde{g} \circ \mathcal{F}^{n}\right\rangle-\langle\tilde{f}\rangle\langle\tilde{g}\rangle\right| \leq B_{\tilde{f}, \tilde{g}} \theta_{f_{0}, g_{0}}^{n}
$$

for all $n \geq 0$, where $\theta_{f_{0}, g_{0}}$ is as in (10) and

$$
B_{\tilde{f}, \tilde{g}}=C_{0}\left\|f_{0}\right\|_{\infty}^{r}\left\|g_{0}\right\|_{\infty}^{k}\left(\frac{K_{f_{0}}}{1-\vartheta_{f_{0}}}\left\|g_{0}\right\|_{\infty}+\left\|f_{0}\right\|_{\infty} \frac{K_{g_{0}}}{1-\vartheta_{g_{0}}}+\left\|f_{0}\right\|_{\infty}\left\|g_{0}\right\|_{\infty}\right) .
$$

Remark 9 The reader should pay attention to the form of the prefactor $B_{\tilde{f}, \tilde{g}}$. Any growth with r and k is associated with the norms $\|\cdot\|_{\infty}$, which measure size, not with the dynamical Hölder constants K., which measure regularity. Moreover, the rate of decay remains under control (in fact unchanged) as r and k increase.

Corollary 8 strengthens Theorem 4.5 of [11] regarding the regularity assumption. We are in position to prove

Theorem 10 If $f \in \mathcal{H}_{\star}^{-} \cap \mathcal{H}_{\star}^{+}$is real-valued and bounded, then the Central Limit Theorem (2) holds together with (4).

Proof Because the auto correlations $C_{f}(n)$ decay sufficiently fast by Theorem 7, condition (3) is satisfied which implies (4). According to Corollary 3, it suffices to bound $\left|\left\langle w_{1} \cdot W_{r} \circ \mathcal{F}^{p+q}\right\rangle-\left\langle w_{1}\right\rangle\left\langle W_{r}\right\rangle\right|$ (see the definitions of w_{1} and W_{r} in Theorem 1 and Corollary 3). This involves functions of the form $g=e^{i t f / \sqrt{k \operatorname{Var} S_{p}}} \in \mathcal{H}_{\star}^{-} \cap \mathcal{H}_{\star}^{+}$, for which $\|g\|_{\infty}=1, \vartheta_{g}=\vartheta_{f}$, and $K_{g} \leq\left(|t| / \sqrt{k \operatorname{Var} S_{p}}\right) K_{f}=\mathcal{O}(1 / \sqrt{n})|t| K_{f}$. We then use Corollary 8 with $w_{1} \circ \mathcal{F}^{-p}$ assuming the role of \tilde{f} and W_{r} that of \tilde{g} (recall that \mathcal{F} is invertible):

$$
\left|\left\langle w_{1} \cdot W_{r} \circ \mathcal{F}^{p+q}\right\rangle-\left\langle w_{1}\right\rangle\left\langle W_{r}\right\rangle\right| \leq C_{0}\left(\frac{\mathcal{O}(1 / \sqrt{n})|t| K_{f}}{1-\vartheta_{f}}+1\right) \theta_{f, f}^{q}
$$

Finally, recall from above Theorem 1 that the quantity k appearing in Corollary 3 grows as n^{1-a}. Hence, $\lim _{n \rightarrow 0} k \theta_{f, f}^{q}=0$, and the CLT follows by Corollary 3 .

The class $\mathcal{H}_{\star}^{-} \cap \mathcal{H}_{\star}^{+}$of observables f is wider than the class $\mathcal{H}^{-} \cap \mathcal{H}^{+}$of [11]. This is not the main point-nor a mere curiosity. What is important is that we have been able to derive the CLT directly from a pure pair correlation bound, namely Theorem 7. This could not have been accomplished without extending the estimates to \mathcal{H}_{\star}^{-}and \mathcal{H}_{\star}^{+}for the reasons explained in Remark 5.

Next, we give the argument leading to Theorem 7. The latter does not follow as a corollary from the theorems of [11] but requires a careful study of the full proof of Chernov. Instead of repeating large parts of [11] in which all the basic work has been done, we point directly to the places in it where care is needed.

[^4]Proof of Theorem 7 The Coupling Lemma [11, Lemma 3.4] does not concern observables at all and is thus immune to relaxing their regularity. The Equidistribution Theorem [11, Theorem 4.1] holds assuming just $g \in \mathcal{H}_{\star}^{-.}$. This is so, because regularity is only used in the estimate (4.4) of the proof, and this estimate remains valid if $g \in \mathcal{H}_{\star}^{-}$as the coupled points x and y lie on the same homogeneous stable manifold ${ }^{6}$ according to the Coupling Lemma.

One then has to verify that relaxing the regularity condition for the pair correlation bound of [11, Theorem 4.3] is legitimate. The bound on the quantity δ_{α} appearing below (4.11) in [11] is clearly the only place where the regularity of g matters. This bound remains unaffected if we assume $g \in \mathcal{H}_{\star}^{-}$, since it only relies on the bound in Theorem 4.1 which remains unchanged as we saw above. As far as the regularity of f is concerned, only homogeneous unstable manifolds count. This is obvious from the definition of \bar{f} and the inequality (4.10). Thus, it is enough to take $f \in \mathcal{H}_{\star}^{+}$.

Remark 11 In [11], the proof of Theorem 4.5 (which corresponds to Corollary 8 above) is almost identical with the proof of Theorem 4.3 (which corresponds to Theorem 7 above). We have seen above that Theorem 4.5 actually becomes a direct consequence of Theorem 4.3 after the classes \mathcal{H}_{\star}^{+}and \mathcal{H}_{\star}^{-}have been incorporated as in Theorem 7 and Corollary 8 .

In [11], Theorem 4.3 is derived from an "equidistribution property" stated in Theorem 4.1. Similarly, Theorem 4.5 is derived from Theorem 4.2 which states an "equidistribution property" for multiple observation times. Both Theorems 4.1 and 4.2 require the observables to be in $\mathcal{H}^{-} \cap \mathcal{H}^{+}$, but as is pointed out in the paper, they hold under the weaker assumption that the observables be in \mathcal{H}^{-}. Interestingly, Theorem 4.1 can be strengthened so as to hold for \mathcal{H}_{\star}^{-}. After this it implies directly a stronger form of Theorem 4.2 that holds for \mathcal{H}_{\star}^{-}.

4 Anosov Diffeomorphisms

Statistical properties of Anosov diffeomorphisms [1,5] are well understood. We will exemplify here the passage from a strong pair correlation bound to the CLT with such maps. As Anosov diffeomorphisms lack the singularities of Billiards, one rightly expects everything to work as in the previous section. Notice, however, that throughout Sect. 3 it was assumed that the space is 2-dimensional. We include this section because of its transparency and because detailed pair correlation bounds are available in any dimension.

In the following, $C^{1+\alpha}$ stands for differentiable functions whose first derivative is C^{α}, i.e., Hölder continuous with exponent $0<\alpha<1$. Let \mathcal{M} be a d-dimensional Riemannian manifold and \mathcal{F} a transitive $C^{1+\alpha}$ Anosov diffeomorphism on it. Let $d^{s}(x, y)$ denote the distance between x and y along a stable manifold $(=\infty$ if x and y are not on the same stable manifold, i.e., $\left.y \notin W^{s}(x)\right)$. Similarly, let $d^{u}(x, y)$ be the distance along an unstable manifold. There exists $0<v<1$ such that $d^{s}(\mathcal{F} x, \mathcal{F} y) \leq v d^{s}(x, y)$ if $x \in W^{s}(y)$ and $d^{u}\left(\mathcal{F}^{-1} x, \mathcal{F}^{-1} y\right) \leq \nu d^{u}(x, y)$ if $x \in W^{u}(y)$.

We recall some definitions from [6]. Fix $\delta>0$ and $0<\beta<1$. Define, for all $f: \mathcal{M} \rightarrow \mathbb{C}$,

$$
|f|_{s}=\sup _{d^{s}(x, y) \leq \delta} \frac{|f(x)-f(y)|}{d^{s}(x, y)^{\beta}}, \quad\|f\|_{s}=\|f\|_{\infty}+|f|_{s},
$$

[^5]and
$$
|f|_{u}=\sup _{d^{u}(x, y) \leq \delta} \frac{|f(x)-f(y)|}{d^{u}(x, y)^{\alpha}}, \quad\|f\|_{u}=\|f\|_{1}+|f|_{u}
$$
where the L^{1}-norm is defined with respect to the Riemannian volume. Finally, \mathcal{C}_{s} stands for the set of Borel measurable functions $f: \mathcal{M} \rightarrow \mathbb{C}$ with $\|f\|_{s}<\infty$.

Although results similar to the one below have been known much earlier, we cite [6, Corollary 2.1] due to the precise form of the bound there. The latter paper is based on the coupling approach, but good bounds are obtainable by other means. In particular, we mention the spectral method in [16] and [2] which also yields strong limit theorems [9, 15].

Theorem 12 There exists a unique \mathcal{F}-invariant SRB measure μ. There exist $0<\theta<1$ and $C_{0}>0$ such that, for all $f \in C^{\alpha}$ and all $g \in \mathcal{C}_{s}$,

$$
\left|\left\langle f \cdot g \circ \mathcal{F}^{n}\right\rangle-\langle f\rangle\langle g\rangle\right| \leq C_{0}\|f\|_{u}\|g\|_{s} \theta^{n},
$$

where $\langle\cdot\rangle$ stands for the μ-integral.
The following bound on multiple correlations is readily implied. Extending it to nonconsecutive times is easy.

Corollary 13 Let $\tilde{f}=f_{0} \cdot f_{1} \circ \mathcal{F}^{-1} \cdots f_{r} \circ \mathcal{F}^{-r}$ and $\tilde{g}=g_{0} \cdot g_{1} \circ \mathcal{F}^{1} \cdots g_{k} \circ \mathcal{F}^{k}$, where $f_{0}, \ldots, f_{r} \in C^{\alpha}$ and $g_{0}, \ldots, g_{k} \in \mathcal{C}_{s}$. Assume also that each $\left\|f_{i}\right\|_{\infty}=\left\|f_{0}\right\|_{\infty}$ and each $\left\|g_{i}\right\|_{\infty}=\left\|g_{0}\right\|_{\infty}$. Then,

$$
\left|\left\langle\tilde{f} \cdot \tilde{g} \circ \mathcal{F}^{n}\right\rangle-\langle\tilde{f}\rangle\langle\tilde{g}\rangle\right| \leq B_{\tilde{f}, \tilde{g}} \theta^{n}
$$

where

$$
B_{\tilde{f}, \tilde{g}}=C\left\|f_{0}\right\|_{\infty}^{r}\left\|g_{0}\right\|_{\infty}^{k}\left(\max _{i}\left|f_{i}\right|_{u}\left\|g_{0}\right\|_{\infty}+\left\|f_{0}\right\|_{\infty} \max _{i}\left|g_{i}\right|_{s}+\left\|f_{0}\right\|_{\infty}\left\|g_{0}\right\|_{\infty}\right) .
$$

Proof Assuming $d^{s}(x, y) \leq \delta$,

$$
\begin{aligned}
|\tilde{g}(x)-\tilde{g}(y)| & \leq \sum_{l=0}^{k}\left|g_{0}(x) \cdots g_{l-1}\left(\mathcal{F}^{l-1} x\right)\right|\left|g_{l}\left(\mathcal{F}^{l} x\right)-g_{l}\left(\mathcal{F}^{l} y\right)\right|\left|g_{l+1}\left(\mathcal{F}^{l+1} y\right) \cdots g_{k}\left(\mathcal{F}^{k} y\right)\right| \\
& \leq \sum_{l=0}^{k}\left(\prod_{i \neq l}\left\|g_{i}\right\|_{\infty}\right)\left|g_{l}\left(\mathcal{F}^{l} x\right)-g_{l}\left(\mathcal{F}^{l} y\right)\right| \\
& \leq \sum_{l=0}^{k}\left(\prod_{i \neq l}\left\|g_{i}\right\|_{\infty}\right)\left|g_{l}\right|_{s} d^{s}\left(\mathcal{F}^{l} x, \mathcal{F}^{l} y\right)^{\beta} \\
& \leq \sum_{l=0}^{k}\left(\prod_{i \neq l}\left\|g_{i}\right\|_{\infty}\right)\left|g_{l}\right|_{s} v^{\beta l} d^{s}(x, y)^{\beta} \leq \frac{\prod_{i}\left\|g_{i}\right\|_{\infty}}{\min _{i}\left\|g_{i}\right\|_{\infty}} \frac{\max _{l}\left|g_{l}\right|_{s}}{1-v^{\beta}} d^{s}(x, y)^{\beta}
\end{aligned}
$$

From this we obtain a bound on $|\tilde{g}|_{s}$ which implies

$$
\|\tilde{g}\|_{s} \leq \frac{1}{1-v^{\beta}}\left(\prod_{i}\left\|g_{i}\right\|_{\infty}\right)\left(1+\frac{\max _{l}\left|g_{l}\right|_{s}}{\min _{i}\left\|g_{i}\right\|_{\infty}}\right)
$$

and that $\tilde{g} \in \mathcal{C}_{s}$. It is clear that $\tilde{f} \in C^{\alpha}$. Mimicking the treatment of \tilde{g} and using $\|\tilde{f}\|_{1} \leq$ $\|\tilde{f}\|_{\infty}\|1\|_{1}$, we also get

$$
\|\tilde{f}\|_{u} \leq \frac{\max \left(1,\|1\|_{1}\right)}{1-v^{\alpha}}\left(\prod_{i}\left\|f_{i}\right\|_{\infty}\right)\left(1+\frac{\max _{l}\left|f_{l}\right|_{u}}{\min _{i}\left\|f_{i}\right\|_{\infty}}\right) .
$$

We can then apply Theorem 12.
Notice that the proof contains a stability result similar to Lemma 4. Following [14], the Central Limit Theorem can then be established immediately with the aid of Corollary 13.

Theorem 14 If $f \in C^{\alpha} \cap \mathcal{C}_{s}$ is real-valued, then the Central Limit Theorem (2) holds together with (4).

Proof The proof of Theorem 10 applies, mutatis mutandis.
Corollary 13 is interesting in its own right, as it gives a rather explicit bound on the multiple correlations for generic transitive Anosov diffeomorphisms.

5 Invertible Case

5.1 Piecewise Expanding Maps

Here we present an example of a non-invertible, piecewise expanding, dynamical system in which a known pair correlation bound (Theorem 15) can be used to prove the CLT. However, this time the situation is not as straightforward, and an extra ingredient, the Lasota-Yorke inequality appearing in (12), will be needed. The latter is known to imply a spectral gap and further the CLT. Nonetheless, our proof is formally independent of spectral arguments and we have chosen to include it as an interesting example of the usage of Corollary 3. In the case at issue, a notably direct way of passing from the pair correlation bound to the CLT has been established in [21]. It is based on a general result on martingale approximations rather than bounding multiple correlations, which seems particularly well suited to the noninvertible setting. An early CLT for piecewise expanding maps can be found for example in [26].

Let $\mathcal{F}:[0,1] \rightarrow[0,1]$ be a piecewise C^{2}, uniformly expanding, map and suppose $d \mu=$ $\phi d x$ is an absolutely continuous invariant measure with respect to the Lebesgue measure $d x$ with density $\phi \in L^{1}([0,1], d x)$. We write $\|f\|_{1}=\int_{0}^{1}|f| d x$. A complex-valued function g defined on $[a, b]$ is of bounded variation, denoted $g \in B V[a, b]$, if the total variation $\bigvee_{a}^{b} g=$ $\sup _{\left(x_{i}\right)} \sum_{i}\left|g\left(x_{i}\right)-g\left(x_{i+1}\right)\right|$ is finite. Here the supremum runs over all finite partitions of $[a, b]$. The following theorem [17] can be found in [20] up to trivial modifications.

Theorem 15 Suppose the system (\mathcal{F}, μ) is mixing and that $\inf \phi>0$. Then there exist constants $b>0, K>0$, and $\Lambda \in(0,1)$ such that, for each $f \in L^{1}([0,1], d x)$ and $g \in B V[0,1]$

$$
\begin{equation*}
\left|\int_{0}^{1} f \circ \mathcal{F}^{n} g d x-\int_{0}^{1} f d \mu \int_{0}^{1} g d x\right| \leq K \Lambda^{-n}\|f\|_{1}\left(\|g\|_{1}+b \bigvee_{0}^{1} g\right) \tag{11}
\end{equation*}
$$

Remark 16 Under the assumptions of the theorem, $\phi \in B V[0,1]$.

Let us denote $\lambda=\inf \left|\mathcal{F}^{\prime}\right|$ and assume $\lambda>2$, by considering a sufficiently large power of \mathcal{F} if necessary. Let \mathcal{L} stand for the transfer operator of \mathcal{F} with respect to the Lebesgue measure:

$$
(\mathcal{L} g)(x)=\sum_{y \in \mathcal{F}^{-1} x} \frac{g(y)}{\left|\mathcal{F}^{\prime}(y)\right|}
$$

There exists a constant A, depending on the map \mathcal{F}, such that

$$
\begin{equation*}
\bigvee_{0}^{1}(\mathcal{L} g) \leq 2 \lambda^{-1} \bigvee_{0}^{1} g+A\|g\|_{1} \tag{12}
\end{equation*}
$$

holds for all $g \in B V[0,1][18]$. Together, (11) and (12) imply the CLT in a straightforward fashion, as we will now see.

Remark 17 The Lasota-Yorke inequality (12) is usually used with real-valued functions. From its proof in [20] it is apparent that it holds true for complex-valued functions. Also the bound in (11) extends to complex-valued functions. First assume $f=u+i v$ is complex and g is real, use (11), and notice that $\|u\|_{1}+\|v\|_{1} \leq \sqrt{2}\|f\|_{1}$. Next, assume also $g=t+i w$ is complex, use (11), and notice that $\bigvee_{0}^{1} t+\bigvee_{0}^{1} w \leq 2 \bigvee_{0}^{1} g$.

Setting $W_{r}=w_{1} \cdots w_{r-1}$ and $\langle f\rangle=\int_{0}^{1} f d \mu$ as before,

$$
\begin{equation*}
\left\langle w_{1} \cdots w_{r}\right\rangle=\left\langle w_{1} \cdot W_{r} \circ \mathcal{F}^{p+q}\right\rangle=\int_{0}^{1} \mathcal{L}^{p-1}\left(\phi w_{1}\right) \cdot W_{r} \circ \mathcal{F}^{q+1} d x \tag{13}
\end{equation*}
$$

Moreover,

$$
\int_{0}^{1} \mathcal{L}^{p-1}\left(\phi w_{1}\right) d x=\left\langle w_{1}\right\rangle \quad \text { and } \quad \int_{0}^{1} W_{r} d \mu=\left\langle w_{2} \cdots w_{r}\right\rangle,
$$

where invariance has been used. Hence, (11) yields

$$
\begin{equation*}
\left|\left\langle w_{1} \cdots w_{r}\right\rangle-\left\langle w_{1}\right\rangle\left\langle w_{2} \cdots w_{r}\right\rangle\right| \leq K \Lambda^{-q-1}\left(1+b \bigvee_{0}^{1} \mathcal{L}^{p-1}\left(\phi w_{1}\right)\right) \tag{14}
\end{equation*}
$$

as $\left|w_{i}\right|=1$ implies $\left\|W_{r}\right\|_{1}=1$ and $\left\|\mathcal{L}^{p-1}\left(\phi w_{1}\right)\right\|_{1} \leq\left\|\phi w_{1}\right\|_{1}=\|\phi\|_{1}=1$.
We are done if we can establish a good bound on $\bigvee{ }_{0}^{1} \mathcal{L}^{p-1}\left(\phi w_{1}\right)$. A straightforward iteration of (12) will not suffice, because $\bigvee_{0}^{1}\left(\phi w_{1}\right)$ seems to grow at a dominating exponential rate due to the presence of \mathcal{F}^{p-1} in w_{1}. Controlling the growth of total variation is precisely the reason we introduced the regularizing transfer operator \mathcal{L} in (13).

Let us denote $G_{p}=\phi \cdot g \cdot g \circ \mathcal{F} \cdots g \circ \mathcal{F}^{p}$, where $g=e^{i t f / \sqrt{k \operatorname{Var} S_{p}}}$. In particular, $G_{p-1}=\phi w_{1}$. With the aid of the identity

$$
\mathcal{L}(f \circ \mathcal{F} \cdot g)=f \cdot \mathcal{L} g
$$

we are able to write the recursion relation

$$
\mathcal{L}^{p} G_{p}=\mathcal{L}^{p}\left(G_{p-1} \cdot g \circ \mathcal{F}^{p}\right)=\mathcal{L}^{p}\left(G_{p-1}\right) \cdot g=\mathcal{L}\left(\mathcal{L}^{p-1} G_{p-1}\right) \cdot g
$$

because \mathcal{L}^{p} is the transfer operator of \mathcal{F}^{p}. Now,

$$
\bigvee_{0}^{1} \mathcal{L}^{p} G_{p} \leq\|g\|_{\infty} \bigvee_{0}^{1} \mathcal{L}\left(\mathcal{L}^{p-1} G_{p-1}\right)+\left\|\mathcal{L}^{p} G_{p-1}\right\|_{\infty} \bigvee_{0}^{1} g,
$$

where $|g|=1$ yields $\left|\mathcal{L}^{p} G_{p-1}\right| \leq \mathcal{L}^{p}\left|G_{p-1}\right|=\mathcal{L}^{p} \phi=\phi$ so that $\left\|\mathcal{L}^{p} G_{p-1}\right\|_{\infty} \leq\|\phi\|_{\infty}$. By (12),

$$
\bigvee_{0}^{1} \mathcal{L}^{p} G_{p} \leq 2 \lambda^{-1} \bigvee_{0}^{1} \mathcal{L}^{p-1} G_{p-1}+A+\|\phi\|_{\infty} \bigvee_{0}^{1} g
$$

which can be iterated to prove

$$
\bigvee_{0}^{1} \mathcal{L}^{p} G_{p} \leq\left(2 \lambda^{-1}\right)^{p} \bigvee_{0}^{1}(\phi g)+\frac{A+\|\phi\|_{\infty} \bigvee_{0}^{1} g}{1-2 \lambda^{-1}} \leq\left(2 \lambda^{-1}\right)^{p} \bigvee_{0}^{1} \phi+\frac{A+2\|\phi\|_{\infty} \bigvee_{0}^{1} g}{1-2 \lambda^{-1}}
$$

for every value of p. Finally, $\bigvee_{0}^{1} g \leq\left(|t| / \sqrt{k \operatorname{Var} S_{p}}\right) \bigvee_{0}^{1} f=\mathcal{O}(1 / \sqrt{n}) \bigvee_{0}^{1} f$ for fixed values of t. Hence, $\sup _{n} \bigvee_{0}^{1} \mathcal{L}^{p-1}\left(\phi w_{1}\right)<\infty$ and

$$
\begin{equation*}
\left|\left\langle w_{1} \cdots w_{r}\right\rangle-\left\langle w_{1}\right\rangle\left\langle w_{2} \cdots w_{r}\right\rangle\right| \leq C \Lambda^{-q} \tag{15}
\end{equation*}
$$

for all $2 \leq r \leq k$ and all n. This bound implies the CLT due to Corollary 3 .
We finish with a discussion of the map $\mathcal{F}: x \mapsto 2 x \bmod 1$. In this case the situation is quite a bit simpler than above, and (12) is not needed. First of all, $\phi \equiv 1$. Second, $\bigvee_{0}^{1} \mathcal{L} g \leq$ $\frac{1}{2} \bigvee_{0}^{\frac{1}{2}} g+\frac{1}{2} \bigvee_{\frac{1}{2}}^{1} g=\frac{1}{2} \bigvee_{0}^{1} g$ and $\bigvee_{0}^{1} g \circ \mathcal{F}^{\ell} \leq 2^{\ell}\left(\bigvee_{0}^{1} g+|g(1)-g(0)|\right) \leq 2^{\ell+1} \bigvee_{0}^{1} g$ hold for all $g \in B V$. Using these facts and the bound $\bigvee_{0}^{1} f g \leq \bigvee_{0}^{1} f\|g\|_{\infty}+\|f\|_{\infty} \bigvee_{0}^{1} g$ recursively,

$$
\bigvee_{0}^{1} \mathcal{L}^{p-1} w_{1} \leq \frac{1}{2^{p-1}} \bigvee_{0}^{1} w_{1} \leq \frac{1}{2^{p-1}}\|g\|_{\infty}^{p-1} \sum_{\ell=0}^{p-1} \bigvee_{0}^{1} g \circ \mathcal{F}^{\ell} \leq 4\|g\|_{\infty}^{p-1} \bigvee_{0}^{1} g
$$

Finally, we recall that $\|g\|_{\infty}=1$ and insert the bound above into (14). Again, (15) follows.

5.2 Bernoulli Shift

For simplicity, we discuss the full one-sided shift of two symbols. It is isomorphic to the map $x \mapsto 2 x \bmod 1$ above, but an independent treatment may appeal to the reader. Let $\mathcal{M}=\{0,1\}^{\mathbb{Z}_{+}}$be the set of sequences $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ with each $\omega_{i} \in\{0,1\}$ and denote by $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$ the shift operator $(\mathcal{F} \omega)_{i}=\omega_{i+1}$. We fix a Bernoulli measure v on the symbol set $\{0,1\}$ and write $\mu=\bigotimes^{\mathbb{Z}_{+}} v$ for the infinite product measure. Then μ is \mathcal{F}-invariant.

We can equip \mathcal{M} with the metric $d\left(\omega, \omega^{\prime}\right)=\sum_{i=1}^{\infty} 2^{-i}\left|\omega_{i}-\omega_{i}^{\prime}\right|$ and then consider Hölder continuous functions g satisfying $|g|_{\eta} \equiv \sup _{\omega \neq \omega^{\prime}} \frac{\left|g(\omega)-g\left(\omega^{\prime}\right)\right|}{d\left(\omega, \omega^{\prime}\right)^{\eta}}<\infty$ with exponent $\eta \in(0,1)$.

Theorem 18 Let $f \in L^{1}(\mu)$ and g be Hölder continuous with exponent η. Then

$$
\begin{equation*}
\left|\left\langle f \circ \mathcal{F}^{n} \cdot g\right\rangle-\langle f\rangle\langle g\rangle\right| \leq\|f\|_{1}|g|_{\eta} 2^{-\eta n} \quad n \geq 0 . \tag{16}
\end{equation*}
$$

The angular brackets refer to integration with respect to μ.
Proof For each ω, set $\omega_{\leq n}=\left(\omega_{1}, \ldots, \omega_{n}\right)$ and $\omega_{>n}=\left(\omega_{n+1}, \omega_{n+2}, \ldots\right)$. Define $g_{n}\left(\omega_{\leq n}\right)=$ $\int g\left(\omega_{\leq n}, \tilde{\omega}\right) d \mu(\tilde{\omega})$. Then

$$
\left\langle f \circ \mathcal{F}^{n} \cdot g_{n}\right\rangle=\int f\left(\omega_{>n}\right) g_{n}\left(\omega_{\leq n}\right) d \mu(\omega)=\langle f\rangle\left\langle g_{n}\right\rangle=\langle f\rangle\langle g\rangle,
$$

so that

$$
\left|\left\langle f \circ \mathcal{F}^{n} \cdot g\right\rangle-\langle f\rangle\langle g\rangle\right|=\left|\left\langle f \circ \mathcal{F}^{n} \cdot\left(g-g_{n}\right)\right\rangle\right| \leq\|f\|_{1} \sup _{\omega} \int\left|g(\omega)-g\left(\omega_{\leq n}, \tilde{\omega}\right)\right| d \mu(\tilde{\omega}) .
$$

The Hölder property of g implies the desired bound.
Since $d\left(\mathcal{F} \omega, \mathcal{F} \omega^{\prime}\right)=2 d\left(\omega, \omega^{\prime}\right)-\left|\omega-\omega^{\prime}\right| \leq 2 d\left(\omega, \omega^{\prime}\right)$, we have

$$
\begin{equation*}
|g \circ \mathcal{F}|_{\eta} \leq 2^{\eta}|g|_{\eta} . \tag{17}
\end{equation*}
$$

It is easy to check that $\mathcal{L} g(\omega)=\int g\left(\omega_{0}, \omega\right) d \nu\left(\omega_{0}\right)$ defines the transfer operator \mathcal{L} of \mathcal{F}, i.e., $\langle f \circ \mathcal{F} \cdot g\rangle=\langle f \cdot \mathcal{L} g\rangle$. Moreover,

$$
\begin{equation*}
|\mathcal{L} g|_{\eta} \leq 2^{-\eta}|g|_{\eta} . \tag{18}
\end{equation*}
$$

Next, we use Corollary 3. By (16),

$$
\left|\left\langle w_{1} \cdot W_{r} \circ \mathcal{F}^{p+q}\right\rangle-\left\langle w_{1}\right\rangle\left\langle W_{r}\right\rangle\right|=\left|\left\langle\mathcal{L}^{p} w_{1} \cdot W_{r} \circ \mathcal{F}^{q}\right\rangle-\left\langle\mathcal{L}^{p} w_{1}\right\rangle\left\langle W_{r}\right\rangle\right| \leq\left\|W_{r}\right\|_{1}\left|\mathcal{L}^{p} w_{1}\right|_{\eta} 2^{-\eta q},
$$

where $\left\|W_{r}\right\|_{1} \leq 1$. Using (17) and (18), we see that $\left|\mathcal{L}^{p} w_{1}\right|_{\eta} \leq 2^{-\eta p}\left|w_{1}\right|_{\eta} \leq C p$, because w_{1} (see (5)) is the product of p Hölder continuous functions. It now follows from the estimate above and Corollary 3 that the CLT holds-again using nothing but pair correlation decay.

6 Conclusion

We have argued that detailed information about pair correlations for suitable classes of observables may be sufficient for proving the Central Limit Theorem for a given dynamical system. We have then shown that, for Sinai Billiards in two dimensions as well as transitive Anosov diffeomorphisms in any dimension, such information can actually be encoded into a single pair correlation estimate. In the case of Billiards, the estimate has been obtained by relaxing the regularity assumptions of an estimate in [11]. An estimate in [6] works readily in the Anosov case.

Interesting in its own right is the fact that in both cases the pair correlation estimates implied good estimates on multiple correlations, which tend to be difficult to bound. As suggested in [11], such bounds yield limit theorems more sophisticated than the CLT, including the Weak Invariance Principle and Almost Sure Invariance Principle. We have chosen not to discuss these extensions here as it would seem to produce little that is new.

Let us mention that the pair correlation bound for Billiards is the product of a coupling argument, originally due to Young [27] and further refined by Dolgopyat (see [11, 13], and [14]). The proof of the pair correlation bound for Anosov diffeomorphisms in [6] is
likewise based on a coupling method. This approach has turned out to be very flexible and adaptable to many kinds of systems with some hyperbolicity.

It is then informative to recognize that the proof of the CLT for Billiards presented above depends, at the formal level, little on the fact that the rate of correlation decay is exponential. Rather, the stability property of the classes of observables (Lemma 4) and the form of the prefactor in the correlation estimate (Remark 9) are the ingredients that count. Similar remarks apply to the Anosov case. It would be interesting to know if it is possible to derive a pair correlation bound that implies a strong bound on multiple correlations and hence the CLT in a slowly mixing example.

We have also discussed non-invertible systems in the setting of piecewise expanding interval maps and observed that the situation seems rather different. In the linear case ($x \mapsto$ $2 x$ mod 1 in Sect. 5.1 and Bernoulli shift in Sect. 5.2) our scheme works well. Further work is needed.

Finally, we propose the following objective, which has motivated our work, to think about: formulate checkable conditions on pair correlations for a dynamical system—likely more complicated than a single estimate-under which the CLT holds. Advances in this direction are not only of theoretical interest but could benefit the applied scientist.

Acknowledgements The author is supported by a fellowship from the Academy of Finland. He is grateful to Nikolai Chernov for valuable correspondence and to Lai-Sang Young for her encouragement.

References

1. Anosov, D., Sinai, Ya.: Some smooth ergodic systems. Russ. Math. Surv. 22, 103-167 (1967)
2. Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier (Grenoble) 57(1), 127-154 (2007)
3. Bernstein, S.N.: Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Ann. 97, 1-59 (1927)
4. Bernstein, S.N.: Collected works, Vol. 4. Izdat. Akad. Nauk SSSR, Moscow (1964). MR 30 \# 2
5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd edn. Springer Lecture Notes in Mathematics, vol. 470. Springer, Berlin (2008)
6. Bressaud, X., Liverani, C.: Anosov diffeomorphism and coupling. Ergod. Theory Dyn. Syst. 22, 129-152 (2002)
7. Bunimovich, L.A., Sinai, Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78(4), 479-497 (1980/81)
8. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.I.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46, 47-106 (1991)
9. Chazottes, J.-R., Gouëzel, S.: On almost-sure versions of classical limit theorems for dynamical systems. Probab. Theory Relat. Fields 138(1-2), 195-234 (2007)
10. Chernov, N.I.: Limit theorems and Markov approximations for chaotic dynamical systems. Probab. Theory Relat. Fields 101, 321-362 (1995)
11. Chernov, N.I.: Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122(6) (2006)
12. Chernov, N.I., Dolgopyat, D.: Hyperbolic billiards and statistical physics. In: ICM 2006 Proceedings
13. Chernov, N.I., Dolgopyat, D.: Brownian Brownian Motion-1. Mem. AMS 198(927) (2009)
14. Chernov, N.I., Markarian, R.: Chaotic Billiards. AMS, Providence (2006)
15. Gouëzel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Preprint (2010)
16. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergod. Theory Dyn. Syst. 26(1), 189-217 (2006)
17. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180, 119-140 (1982)
18. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481-488 (1973)
19. Leonov, V.P.: On the dispersion of time-dependent means of a stationary stochastic process. Theory Probab. Appl. 6, 87-93 (1961)
20. Liverani, C.: Decay of correlations in piecewise expanding maps. J. Stat. Phys. 78(3/4), 1111-1129 (1995)
21. Liverani, C.: Central limit theorem for deterministic systems. In: Ledrappier, F., Levovicz, J., Newhouse, S. (eds.). International Conference on Dynamical Systems, Montevideo 1995, a tribute to Ricardo Mañé, Pitman Research Notes in Mathematics Series, vol. 362. Pitman, London (1996)
22. Maxwell, M., Woodroofe, M.: Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28, 713-724 (2000)
23. Sinai, Ya.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25, 137-189 (1970)
24. Szász, D. (ed.): Hard Ball Systems and the Lorentz Gas. Springer, Berlin (2000)
25. Tabachnikov, S.: Billiards. Société Mathématique de France, Paris (1995)
26. Wong, S.: A central limit theorem for piecewise monotonic mappings of the unit interval. Ann. Probab. 7(3), 500-514 (1979)
27. Young, L.-S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153-188 (1999)

[^0]: M. Stenlund (\boxtimes)

 Courant Institute of Mathematical Sciences, New York, NY, 10012, USA
 e-mail: mikko@cims.nyu.edu
 Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
 url: http://www.math.helsinki.fi/mathphys/mikko.html

[^1]: ${ }^{1}$ By Leonov [19, Lemma 1], $\sigma_{f}^{2}=0$ holds for a function $f \in L^{2}(\mu)$ if and only if $f=g \circ \mathcal{F}-g$ for some $g \in L^{2}(\mu)$. Moreover, if $\sigma_{f}^{2}=0$, then $f=g \circ \mathcal{F}-g$ for some g lying in the closed subspace of $L^{2}(\mu)$ spanned by the sequence $\left(f \circ \mathcal{F}^{n}\right)_{n \in \mathbb{N}}$.

[^2]: ${ }^{2}$ Here $[x]$ is the integer part of a number x.

[^3]: ${ }^{3}$ Such a case is recovered by collapsing the invariant cones into invariant lines [11].

[^4]: ${ }^{4}$ This can always be arranged by scaling the functions and choosing the weakest parameters. It is also a simple task to modify the statement so as to remove this condition. This does not serve our purpose here.

[^5]: ${ }^{5}$ In the original text, the observable is denoted f. We have renamed it g not to create confusion in the rest of this proof.
 ${ }^{6}$ In [11], homogeneous (un)stable manifolds are often called (un)stable H-manifolds.

